Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Genetically modified micro-organism – cell – or virus
Reissue Patent
2001-10-16
2004-04-06
Crouch, Deborah (Department: 1632)
Drug, bio-affecting and body treating compositions
Whole live micro-organism, cell, or virus containing
Genetically modified micro-organism, cell, or virus
C435S375000, C435S006120, C435S455000, C435S467000, C435S069100, C800S018000
Reissue Patent
active
RE038490
ABSTRACT:
BACKGROUND
1. Field of the Invention
The present invention relates to methods for the identification and isolation of metastatic sequences, to diagnostic probes and kits which contain metastatic sequences and to therapeutic treatments for neoplastic disorders based on metastatic sequences.
2. Description of the Background
The development of higher organisms is characterized by an exquisite pattern of temporal and spatially regulated cell division. Disruptions in the normal physiology of cell division are almost invariably detrimental. One such type of disruption is cancer, a disease that can arise from a series of genetic events.
Cancer cells are defined by two heritable properties, uncontrolled growth and uncontrolled invasion of normal tissue. A cancerous cell can divide in defiance of the normal growth constraints in a cell leading to a localized growth or tumor. In addition, some cancer cells also gain the ability to migrate away from their initial site and invade other healthy tissues in a patient. It is the combination of these two features that make a cancer cell especially dangerous.
An isolated abnormal cell population that grows uncontrollably will give rise to a tumor or neoplasm. As long as the neoplasm remains in a single location, it is said to be benign, and a complete cure may be expected by removing the mass surgically. A tumor or neoplasm is counted as a cancer if it is malignant, that is, if its cells have the ability to invade surrounding tissue. True malignancy begins when the cells cross the basal lamina and begin to invade the underlying connective tissue. Malignancy occurs when the cells gain the ability to detach from the main tumor mass, enter the bloodstream or lymphatic vessels, and form secondary tumors or metastases at other sites in the body. The more widely a tumor metastasizes, the harder it is to eradicate and treat.
As determined from epidermiological and clinical studies, most cancers develop in slow stages from mildly benign into malignant neoplasms. Malignant cancer usually begins as a benign localized cell population with abnormal growth characteristic called a dysplasia. The abnormal cells acquire abnormal growth characteristics resulting in a neoplasia characterized as a cell population of localized growth and swelling. If untreated, the neoplasia in situ may progress into a malignant neoplasia. Several years, or tens of years may elapse from the first sign of dysplasia to the onset of full blown malignant cancer. This characteristic process is observed in a number of cancers. Prostate cancer provides one of the more clear examples of the progression of normal tissue to benign neoplasm to malignant neoplasm.
The walnut-sized prostate is an encapsulated organ of the mammalian male urogenital system. Located at the base of the bladder, the prostate is partitioned into zones referred to as the central, peripheral and transitional zones, all of which surround the urethra. Histologically, the prostate is a highly microvascularized gland comprising fairly large glandular spaces lined with epithelium which, along with the seminal vesicles, supply the majority of fluid to the male ejaculate. As an endocrine-dependent organ, the prostate responds to both the major male hormone, testosterone, and the major female hormones, estrogen and progesterone. Testicular androgen is considered important for prostate growth and development because, in both humans and other animals, castration leads to prostate atrophy and, in most cases, an absence of any incidence of prostatic carcinoma.
The major neoplastic disorders of the prostate are benign enlargement of the prostate, also called benign prostatic hyperplasia (BPH), and prostatic carcinoma; a type of neoplasia. BPH is very common in men over the age of 50. It is characterized by the presence of a number of large distinct nodules in the periurethral area of the prostate. Although benign and not malignant, these nodules can produce obstruction of the urethra causing nocturia, hesitancy to void, and difficulty in starting and stopping a urine stream upon voiding the bladder. Left untreated, a percentage of these prostate hyperplasia and neoplasias may develop into malignant prostate carcinoma.
In its more aggressive form, transformed prostatic tissues escape from the prostate capsule and metastasize invading locally and throughout the bloodstream and lymphatic system. Metastasis, defined as tumor implants which are discontinuous with the primary tumor, can occur through direct seeding, lymphatic spread and hematogenous spread. All three routes have been found to occur with prostatic carcinoma. Local invasions typically involve the seminal vesicles, the base of the urinary bladder, and the urethra. Direct seeding occurs when a malignant neoplasm penetrates a natural open field such as the peritoneal, pleural or pericardial cavities. Cells seed along the surfaces of various organs and tissues within the cavity or can simply fill the cavity spaces. Hematogenous spread is typical of sarcomas and carcinomas. Hematogenous spread of prostatic carcinoma occurs primarily to the bones, but can include massive visceral invasion as well. It has been estimated that about 60% of newly diagnosed prostate cancer patients will have metastases at the time of initial diagnosis.
Surgery or radiotherapy is the treatment of choice for early prostatic neoplasia. Surgery involves complete removal of the entire prostate (radical prostatectomy), and often removal of the surrounding lymph nodes, lymphadenectomy. Radiotherapy, occasionally used as adjuvant therapy, may be either external or interstitial using
125
I. Endocrine therapy is the treatment of choice for more advanced forms. The aim of this therapy is to deprive the prostate cells, and presumably the transformed prostate cells as well, of testosterone. This is accomplished by orchiectomy (castration) or administration of estrogens or synthetic hormones which are agonists of luteinizing hormone-releasing hormone. These cellular messengers directly inhibit testicular and organ synthesis and suppress luteinizing hormone secretion which in turn leads to reduced testosterone secretion by the testes. Despite the advances made in achieving a pharmacologic orchiectomy, the survival rates for those with late stage carcinomas are rather bleak.
SUMMARY OF THE INVENTION
The present invention overcomes the problems and disadvantages associated with current strategies and designs and provides new methods for the identification of sequences related to metastasis.
One embodiment of the invention is directed to methods for the identification of a metastatic sequence. One or more oncogenic sequences are transfected into a cell to form a transfected cell. The transfected cell is introduced into a primary site of a host animal to establish a colony which is incubated in the animal for a period of time sufficient to develop both a primary tumor and a metastatic tumor. Expressed sequences are harvested from the primary tumor and the metastasis. Harvested sequences are compared to each other and to non-metastatic cells to identify sequences related to metastasis. Dominant metastatic genes are genes whose expression leads to metastasis. Such genes are typically expressed at high levels in metastatic cells and not significantly expressed in normal or nonmetastatic cells. Recessive metastatic genes, genes whose expression prevents metastasis, may be selectively expressed in normal and nonmetastatic cells and absent in metastatic cells. Dominant and recessive metastatic genes may act directly or act pleiotropically by enhancing or inhibiting the expression or function of other dominant and recessive metastatic genes.
Another embodiment of the invention is directed to methods for identifying metastatic sequences. A mammalian cell is treated with a metastatic agent and the treated cell is implanted into a primary site of a host mammal. The host animal is maintained for a period of time sufficient for the cells to proliferate and to develop a
metastatsis
metastasis
at a secondary
cite
site
. Ex
Baylor College of Medicine
Crouch Deborah
Vinson & Elkins L.L.P.
LandOfFree
Method for identifying metastatic sequences does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for identifying metastatic sequences, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for identifying metastatic sequences will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3201717