Method for identifying materials, impurities and related...

Optics: measuring and testing – Inspection of flaws or impurities – Transparent or translucent material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S22300B, C348S127000

Reexamination Certificate

active

06239870

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a method for detecting diffusely scattering materials, impurities, deposits, damage or coatings of the surface or fluctuations in the material thickness in items made of transparent material, the items being transilluminated and examined by a light source and a camera.
Structureless, semi-transparent impurities of items made of transparent material such as glass, PET, PC, PVC and similar can often not be detected using conventional image-processing methods. Among such impurities are for example milky adhesive tapes, thin lacquer coats, rust and thin partly mineral deposits on the inside or outside of the wall of the items. Furthermore, the detection of changes on the surface of the transparent material, such as scratches covering large areas, abrasion traces, surface parts which are etched or sand-blasted as well as in general coatings which impair transparency is also problematic. Such semi-transparent defects slightly attenuate the light entering the camera from the light source in a straight line and diffuse it only slightly. Observed over a larger area, such a defect scarcely reduces brightness, particularly as a dispersion of the light which is brought about by the transparent material itself must also be taken into account. In processes which work with bright-field illumination, the detection of such defects or irregularities is therefore scarcely possible, as the image recorded by the camera shows neither contrasts, contrasts which could be additionally intensified by image processing methods, nor a great reduction in the brightness of the image.
Dark-field methods which are based on a change in the polarization of the light by defect to be detected (EP-A-0 387 930) are often not usable due to the polarization effects which occur in transparent container materials themselves. Other dark-field methods in which the optical axis of the camera stands at a right angle to the direction of illumination (EP-A-0 429 086) can often be carried out only with difficulty due to geometric boundary conditions, and the scatter caused by the semi-transparent defects is often not large enough for these processes.
SUMMARY OF THE INVENTION
The object of the invention is to enable structureless, semi-transparent impurities and defects as listed at the beginning to be detected.
This object is achieved according to the invention in that a contrast pattern is arranged between the light source and the item to be inspected and the contrast of the contrast pattern reproduced through the item is determined.
Semi-transparent materials with weak diffuse dispersion greatly change the optical transmission function. The reproduction of a sharp contour is blurred by this and the contrast weakened. With the method according to the invention, this is exploited to inspect transparent containers for semi-transparent diffusely scattering defects. The contrast pattern consists of transparent and non-transparent regions which are sharply delimited vis-à-vis each other so that when the contrast pattern is illuminated from the rear, maximum differences in brightness and thus a maximum contrast results. With the method according to the invention, such a contrast pattern is arranged between the light source and the transparent item to be inspected so that the item to be inspected is located in the beam path between the contrast pattern and the camera, and the contrast pattern is observed through the transparent item, the detection process otherwise proceeding as in a normal bright-field detection process. The contrast structure of the image recorded by the camera is analyzed using standard methods of image processing. Without semi-transparent defects, the transmission function is hardly disturbed, and in particular the intensity of the contrasts is retained. If on the other hand, a semi-transparent defect is present, the contrast intensity is reduced in the region of this defect, i.e. the brightness distribution becomes more even, as the brightness in the transparent regions of the pattern decreases whilst the brightness in the non-transparent regions of the pattern is increased. The resulting deviation from the target contrast can be detected as a defect.
The minimum size of the detectable defect corresponds approximately to the width of the light and dark regions of the contrast pattern. This width is in turn matched to the resolution of the optical system and possible distortions through the refraction of the light in the transparent material of the items.
Preferably, the camera is focussed on the plane in which the contrast pattern is arranged. The maximum contrast intensity is achieved by this focussing.
The greater the space between the contrast pattern and the item to be inspected, the more intense the effect of diffusely scattering defects on the contrast. However, the optical distortions of the contrast pattern caused by fractures in the material of the wall of the items also become greater as a result of an increase in this interval. A suitable compromise must be found here in each individual case.
Fluctuations in the material thickness of the wall of the items influence the reproduction of the contrast pattern shown in the focal plane of the camera. Such fluctuations act as an additional lens introduced into the beam path, whereby on the one hand the contrast pattern is shown distorted, and on the other hand the focussing for the corresponding image spot is lost. Overall, the contrast structure of the reproduction is thereby influenced such that fluctuations in the material thickness can be ascertained in similar fashion to semi-transparent defects by a decrease in the contrast. In this way, embossed structures in the wall of the items can also be located.
Using the method according to the invention, non-transparent defects can also be detected as these also lead to a change in the contrast. In this respect, however, there are no advantages compared with known bright-field detection methods.
The method according to the invention can be integrated into already existing inspection apparatuses, as the light source and the camera are already present. It can also be combined with other inspection processes. In order that the contrast pattern takes effect only with the inspection process according to the invention, it should be visible only under the optical conditions specified there. It must remain invisible for all other inspection processes. This is enabled by a spectral separation of the two inspection processes. To this end, the contrast pattern can be manufactured from a material in which the non-transparent regions block the beams only for the method according to the invention. The non-transparent regions can e.g. be non-transparent only for a particular wavelength, the contrast structure then being determined for this wavelength only. For the other inspection processes which require a roughly uniformly illuminated background surface, a different spectral range is then used in which the transmission of the contrast pattern is roughly uniform.
Alternatively, the inspection processes can also be separated by different polarization of the individual regions of the contrast pattern. For the method according to the invention, an analyzer is then used, the direction of polarization of which lies perpendicular to that of the dark regions. The other inspection processes are then carried out without such an analyzer so that the whole surface of the contrast pattern shows a uniform brightness.
Embodiments of the invention are shown in the following using the diagram. There are shown in:


REFERENCES:
patent: 4310242 (1982-01-01), Genco et al.
patent: 4547067 (1985-10-01), Watanabe
patent: 4983822 (1991-01-01), Fukuchi
patent: 5243400 (1993-09-01), Ringlien
patent: 5363188 (1994-11-01), Didelot et al.
patent: 5621520 (1997-04-01), Hoffman
patent: 6049379 (2000-04-01), Lucas
patent: 3443816A1 (1985-06-01), None
patent: 19519777A1 (1996-12-01), None
patent: 69304741T2 (1997-04-01), None
patent: 0387930A1 (1990-09-01), None
patent: 0491555A1 (1992-06-01), None
pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for identifying materials, impurities and related... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for identifying materials, impurities and related..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for identifying materials, impurities and related... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2562515

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.