Method for heating and controlling temperature of composite...

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S173000, C156S189000, C156S308200

Reexamination Certificate

active

06451152

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to the manufacture of composite articles and, more particularly, to methods for heating composite material to the required temperature in order to maintain adhesion between a composite tape and a substrate on which the tape is placed regardless of the complexity of the tape path curvature or the contour of the substrate.
BACKGROUND OF THE INVENTION
Composite structures made from fiber-reinforced polymer matrix (resin) materials are commonly manufactured by progressively building up the structure with a plurality of layers of thin composite tape or tow, hereafter collectively referred to as tape, laid one layer upon another. Typically, the operation begins by laying a tape onto a starting template having a configuration generally corresponding to the desired shape of the article to be produced. A tape placement head guides a continuous tape onto the template by providing relative movement between the template and the head, such that the head moves over the surface of the template. The head usually makes repeated passes over the template in a defined pattern until the template is entirely covered. Multiple layers of tape are built up by continued passes of the head over the surface. A compaction roller is usually used for pressing the tape against the template or prior-laid layers of tape to facilitate adhesion of the tape thereto, and the tape and/or the substrate onto which it is laid are heated just prior to the tape being compacted to soften the resin and promote adhesion of the tape to the substrate.
The most commonly used heating method for heating the tape and/or substrate is to impinge the materials with a heated gas. A drawback of this approach is that the flow of gas cannot be controlled with any great precision. Consequently, the heating of the tape and substrate cannot be accurately controlled, and hence the adhesion of the tape to the substrate cannot be accurately controlled.
SUMMARY OF THE INVENTION
The present invention seeks to improve the accuracy of heating of tape and substrate materials during automated article manufacturing. More particularly, the invention employs one or more laser diode arrays for heating the tape and substrate. The laser diode array generates a field of light energy comprised of a plurality of light beams generated by a plurality of laser diodes arranged in a rectangular or two-dimensional array. The array preferably is formed by a plurality of laser diode bars stacked one atop another, each bar having a plurality of laser diodes arranged side-by-side in a widthwise direction of the bar. Each bar is configured with a lens or plurality of lenses to collimate the light emitted by each diode so as to generate a plurality of parallel light beams lying generally in a plane. The invention enables the intensity distribution of the light energy to be tailored to the particular configuration of the composite article being produced, thereby optimizing the temperature profile on the article.
In one preferred embodiment of the invention, a method for forming a composite article includes the steps of guiding the composite tape onto a surface of a substrate and pressing the tape against the substrate in a compaction region such that the tape conforms to the contour of the surface of the substrate and is adhered thereto; and irradiating an area defined by opposing surfaces of the tape and of the substrate proximate the compaction region with a field of light energy generated by a laser diode array to heat the tape and substrate, and controlling the laser diode array to independently control heating of one portion of the irradiated area relative to another portion of the irradiated area.
The laser diode array in one embodiment of the invention is positioned to direct the field of light energy onto the tape and substrate such that the widthwise direction of each bar is generally parallel to the widthwise direction of the tape. In the widthwise direction of the tape, the intensity profile of the field of light energy can be varied by controlling the current supplied to individual diodes, or to groups of diodes, within each bar independently of the other diodes or groups of diodes in the bar. In a lengthwise direction of the tape, the intensity profile of the field of light energy can be varied by controlling the current supplied to each bar independently of the other bars in the array. The invention thus enables a temperature profile over the region of the tape and substrate to be controlled in any desired manner.
Alternatively, the laser diode array can be oriented such that the widthwise direction of each bar is parallel with the lengthwise direction of the tape. In this case, the profile of the temperature across the width of the tape is controlled by controlling the light intensity of each bar independently of the other bars, and the profile of the temperature in the lengthwise direction of the tape is controlled by controlling each diode, or each group of diodes, in each bar independently of the other diodes or groups of diodes in the bar.
In another embodiment of the invention, the profile of the laser intensity across the width of the tape is varied as a function of the curvature of the path along which the tape is steered during placement. When steering a tape along a curved path at the compaction region, the material of the tape on the inner radius of the steered path must conform to a greater degree than the material on the outer radius of the path. In conventional forced-air heating of tape and substrate, there is constant uniform heating of the tape across its width, and the tape placement head typically must be slowed down in order to allow the tape to conform to the substrate without substantial puckering or wrinkling. In the present invention, the laser diode array can be controlled to produce greater heating of the tape at the inner radius of the steered path so that the material can more readily flow and conform, and lesser heating at the outer radius of the steered path where less flow is required. Additionally, when the tape placement head negotiates surfaces of concave or convex curvature, the angle of the head with respect to the surface can vary and the speed of the head can vary. For optimum heating of the tape and substrate, the heat addition should be responsive to such changes. This responsiveness cannot be achieved using conventional forced-air heating. With the present invention, however, the heating profile can be tailored to the contour of the steered path so that heating of the tape and substrate can be more nearly optimum at all times.
In a still further embodiment of the invention, the laser diode array is made up of a plurality of independently addressable zones that are positioned side-by-side along the widthwise direction of the tape. Where the tape has a width less than the width of the light field produced by the full laser diode array, the array is controlled such that less than all of the zones are powered, thereby producing a light field whose width at the tape generally matches the band width of the tape. Thus, the laser diode array can be sized such that when all zones are powered it produces a light field that is as wide as the widest tape to be placed, yet when narrower tapes are placed, the light field's width can be reduced by powering only some of the zones. By this method, heat is applied only to areas of the substrate for which heating is required. The independently addressable zones can be made up of laser diode bars or groups of adjacent bars where the bars have their widthwise directions oriented parallel with the lengthwise direction of the tape. Alternatively, the zones can be made up of individual diodes or groups of adjacent diodes in each bar where the bars have their widthwise directions oriented parallel with the widthwise direction of the tape.
The invention also allows the heating of tapes simultaneously fed at differing feed rates to be adjusted to compensate for the different feed rates. Thus, a tape fed at a faster rate can be heated to a gr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for heating and controlling temperature of composite... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for heating and controlling temperature of composite..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for heating and controlling temperature of composite... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2884560

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.