Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing compound containing saccharide radical
Patent
1993-11-23
1996-05-21
Jones, W. Gary
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Preparing compound containing saccharide radical
435 6, 435 912, 435810, 536 231, 536 243, 536 2433, 536 253, 536 2532, 935 76, 935 77, 935 78, C12Q 168, C12P 1934, C07H 2104, C12N 1500
Patent
active
055189008
ABSTRACT:
A method for generating single-stranded nucleic acid molecules. The molecules contain nuclease resistant modified nucleotides, such that they are resistant to 5'.fwdarw.3' exonucleases.
REFERENCES:
patent: 4683194 (1987-07-01), Saiki et al.
patent: 4683195 (1987-07-01), Mullis et al.
Ott, J., et al., "Protection of Oligonucleotide Primers Against Degradation By DNA Polymerase I," Biochemistry vol. 26, No. 25, pp. 8237-8241 (1987).
Sayers, J. R., et al., "5'-3' Exonucleases In Phosphorothioate-Based Oligonucleotide Mutagenesis," Nucleic Acids Res., vol. 16, No. 3, pp. 791-802 (1988).
Kunkel, T. A., "The Efficiency of Oligonucleotide-Directed Mutagenesis," In Nucleic Acids and Molecular Biology (F. Eckstein and D. M. J. Lilley (eds.)), Springer Verlag Berlin Heidelberg, 2:124-135 (1988).
Nakamaye, K. L. et al., "Inhibition of Restriction Endonuclease Nci I Cleavage by Phosphorothioate Groups and Its Application to Oligonucleotide-Directed Mutagenesis," Nucl. Acids Res., 14(24):9679-9698 (1986).
Taylor, J. W. et al., "The Use of Phosphorothioate-Modified DNA in Restriction Enzyme Reactions to Prepare Nicked DNA," Nucl. Acids Res., 13(4):8749-8763 (1985).
Taylor, J. W. et al., "The Rapid Generation of Oligonucleotide-Directed Mutations At High Frequency Using Phosphorothioate-Modified DNA," Nucl. Acids. Res., 13(24):8765-8785 (1985).
Gupta, A. P., et al., "The Effect of the 3'-5' Thiophosphate Linkage On the Exonuclease Activities of T4 Polymerase and Klenow Fragment," Nucl. Acids. Res., 12(14):5897-5911 (1984).
Putney, S. D., et al., "A DNA Fragment with an alpha-Phosphorothioate Nucleotide at One End is Asymmetrically blocked from Digestion by Exonuclease III and Can Be Replicated In Vivo," Proc. Natl. Acad. Sci. U.S.A., 78(12):7350-7354 (1981).
Zon, G., et al., "Phosphorothioate Oligonucleotides: Chemistry, Purification, Analysis, Scale-Up and Future Directions," Anti-Cancer Drug Design 6:539-568 (1991).
Eckstein, F., et al., "Synthesis and Properties of Disterioisomers of Adenosine 5'-(O-1-Thiophosphate) and Adenosine 5'-(O-2-Thiotriphosphate)," Biochemistry 15(8):1685-1691).
Ludwig, et al., "Rapid and Efficient Synthesis of Nucleoside 5'-O-(1-Thiotriphosphates), 5'-Triphosphates and 2',3'-Cyclophosphorothioates Using 2-Chloro-4H-1,3,2-benzodioxaphosphorin-4-one," J. Org. Chem., 54:631-635 (1989).
Kim, S-G, et al., "Phosphorothioate Analogues of Oligodeoxyribonucleotide: Synthesis and Activity as Inhibitors of Replication of Human Immunodeficiency Virus," Biochem. Biophysical Res. Comm., 179(3):1614-1619 (1991).
Vu, H., et al., "Internucleotide Phosphite Sufurization with Tetraethylthiuram Disulfide. Phosphorothioate Oligonucleotide Synthesis Via Phosphoramidite Chemistry," Tetrahedron Letters 32(26):3005-3008 (1991).
Goodchild, J., "Conjugates of Oligonucleotides and Modified Oligonucleotides: A Review of Their Synthesis and Properties" Bioconjugate Chemistry 1(3):165-187 (1990).
Labeit, S., et al., "Laboratory Methods: A New Method of DNA Sequencing Using Deoxynucleoside alpha-Thiotriphosphates," DNA 5(2):173-177 (1986).
Gish, G., et al., "DNA and RNA Sequencing Using Phosphorthioate Chemistry," Nucl. Acids Res. Sym. Series 18:253-256 (1987).
Wu, D., et al., "The Ligation Amplification Reaction (LAR)-Amplification of Specific DNA Sequences Using Sequential Rounds of Template-Dependent Ligation" Genomics 4:560-569 (1989).
Gyllensten, U. B., et al., "Generation of Single-Stranded DNA by the Polymerase Chain Reaction and Its Application to Direct Sequencing of the HLA-DQA Locus" Proc. Natl. Acad. Sci., U.S.A., 85:7652-7656 (1988).
Mihovilovic, M., et al., "An Efficient Method for Sequencing PCR Amlified DNA" BioTchniques 7(1):14-16 (1989).
Higuchi, R. G., et al., "Production of Single-Stranded DNA Templates by Exonuclease Digestion Following the Polymerase Chain Reaction" Nucleic Acids Res., 17(14):5865 (1989).
Kwoh, D. Y., et al., "Transcription-Based Amplification System and Detection of Amplified Human Immuodeficiency Virus Type 1 with a Bead-Based Sandwich Hybridization Format" Proc. Natl. Acad. Sci. U.S.A., 86:1173-1177 (1989).
Ohara, O., et al., "One-Sided Polymerase Chain Reaction: The Amplification of cDNA," Proc. Natl. Acad. Sci. U.S.A., 86:5673-5677 (1989).
Frohman, M. A., et al., "Rapid Production of Full-Length cDNAs From Rare Transcripts: Amplification Using a Single Gene-Specific Oligonucleotide Primer," Proc. Natl. Acad. Sci. U.S.A., 85:8998-9002 (1988).
Loh, E. Y., et al., "Polymerase Chain Reaction with Single-Sided Specificity: Analysis of T Cell Receptor Gama-Chain," Science 243:217-243 (1989).
Frohman, M. A., et al., "RACE: Rapid Amplification of cDNA Ends," In PCR Protocols: A Guide to Methods and Applications, Academic Press, Inc., pp. 28-38 (1990).
Saiki, R. K., et al., "A Novel Method for the Detection of Polymorphic Restriction Sites by Cleavage of Oligonucleotide Probes: Application to Sickle-Cell Anemia," Biotechnology 3:1008-1012 (1985).
Nickerson, D. A., et al., "Automated DNA Diagnostics Using an ELISA-Based Oligonucleotide Ligation Assay," Proc. Natl. Acad. Sci. U.S.A., 87:8923-8927 (1990).
Mullis, K. et al., "Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction," Cold Spring harbor Symposia on Quantitative Biology 51:263-273 (1986).
Mullis, K., et al., "Specific Synthesis of DNA In Vitro Via a Polymerase-Catalyzed Chain Reaction," Methods Enzymol., 155:355-350 (1987).
Walker, G. T., et al., "Isothermal in vitro Amplification of DNA by a Restriction Enzyme/DNA Polymerase System" Proc. Natl. Acad. Sci. U.S.A., 89:392-396 (1992).
Knapp Michael R.
Nikiforov Theo T.
Jones W. Gary
Molecular Tool, Inc.
Sisson Bradley L.
LandOfFree
Method for generating single-stranded DNA molecules does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for generating single-stranded DNA molecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for generating single-stranded DNA molecules will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2037283