Image analysis – Applications – Biomedical applications
Reexamination Certificate
2002-09-27
2004-02-24
Johnson, Timothy M. (Department: 2625)
Image analysis
Applications
Biomedical applications
C382S128000, C382S170000, C382S167000, C382S134000, C702S027000, C356S300000
Reexamination Certificate
active
06697510
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to a spectral imaging method for determining physicochemical properties and characteristics of a crystalline particulate substance, and more particularly, to a method for generating intra-particle crystallographic parameter maps and histograms of a chemically pure crystalline particulate substance, by spectral imaging of individual particles of the chemically pure crystalline particulate substance and analyzing the spectral images using pattern recognition classification analysis.
In the field of commercial handling, processing, and manufacturing, of crystalline particulate substances, including analysis and control thereof, especially as applied in the biopharmaceutical industry, there is on-going interest, resources, and activities, being devoted to techniques for measuring, determining, and analyzing, physicochemical data and information relating to crystallographic properties, characteristics, and parameters, of crystalline particulate substances, in general, and of chemically pure crystalline particulate substances, in particular.
In the highly regulated biopharmaceutical industry, an important stage during research and development of a new therapeutic product such as a natural or synthetic drug, high performance chemical, or, micro-organism, featuring at least one chemically pure crystalline particulate substance either in the raw material(s) and/or in the eventual finished pharmaceutical product formulated as a tablet capsule, caplet, or loose powder, involves extensive and well documented laboratory analytical testing of the physicochemical properties and characteristics of each chemically pure crystalline particulate substance. Analogous, but less stringent activities are also performed in the regulated food and beverage industries, regarding research and development of a new food or beverage product such as a natural or synthetic food or beverage ingredient, additive, high performance chemical, or, micro-organism, functioning as a flavor, a preservative, or, a consistency enhancer, featuring at least one chemically pure crystalline particulate substance either in the raw material(s) and/or in the eventual finished food or beverage product formulated as a stand alone compact or loose powder, or, as a compact or loose powder as part of another food or beverage product.
In a crystalline solid, herein, referred to as a crystalline particulate substance, to be distinguished from noncrystalline substances such as liquids and amorphous solids or amorphous particulate substances, structurally, the constituent particles, compounds, atoms, molecules, or ions, are arranged in an orderly, repetitive pattern or crystal structure in three dimensions. Herein, the term ‘chemically pure crystalline particulate substance’ refers to a crystalline particulate substance featuring a plurality of crystalline particles each composed of at least one chemically pure individual chemical compound, where the chemically pure crystalline particulate substance is typically heterogeneous with respect to morphological or geometrical distribution and/or with respect to frequency distribution of physicochemical properties and characteristics, such as concentration, density, particle size, particle geometry; particle shape, particle porosity, and crystallographic parameters of crystal type and crystal class, of the at least one chemically pure individual compound throughout a given sized sample of the chemically pure crystalline particulate substance.
In the biopharmaceutical industry, information about the physicochemical properties and characteristics of each chemically pure crystalline particulate substance are needed in a later stage for performing pharmacodynamical studies, involving metabolic and efficacy studies of the therapeutic product when ingested by an animal or human during pre-clinical and clinical studies. Metabolic information about the therapeutic product is needed for designing and evaluating efficacy studies, where the effectiveness of the therapeutic product for performing the indicated therapeutic function in a subject is measured. Ultimately, information and data from the efficacy studies are used for establishing the final formulation and recommended dosage levels of the new therapeutic product, for large scale dispensing to the consumer market. Correspondingly, data and information about the final formulation are used for establishing standardized quality control parameters and criteria for full-scale manufacturing of the new therapeutic product. Again, analogous, but less stringent activities are also performed in the regulated food and beverage industries, regarding each chemically pure crystalline particulate substance eventually ending up in a new food or beverage product, for large scale distribution to the consumer market.
Full-scale manufacturing of such a new or current, therapeutic, or, food or beverage, product, involves extensive and well documented standardized quality control testing of each chemically pure crystalline particulate raw material and/or each chemically pure crystalline particulate finished product, according to established quality control and quality assurance parameters and criteria. Similar to the research and development stages of such a product, this involves laboratory analytical testing and classification of the physicochemical properties and characteristics of each chemically pure crystalline particulate substance comprising the therapeutic, or, food or beverage, product.
Laboratory analytical testing of such a chemically pure crystalline particulate substance, during research and development stages or during routine finished product quality control testing, typically includes measuring and determining physicochemical properties and characteristics, such as concentration, density, particle size, particle geometry, particle shape, particle porosity, and/or crystallographic parameters, of a sample of the chemically pure crystalline particulate substance, in a statistically meaningful manner. Typically, such laboratory testing also includes measuring and determining dissolution properties of each applicable or selected chemically pure crystalline particulate substance. Dissolution testing provides data and information about the kinetics and thermodynamics of dissolution of a given chemically pure crystalline particulate substance in a variety of solvents. As indicated above, in the biopharmaceutical industry, such detailed information about the physicochemical properties and characteristics of each chemically pure crystalline particulate substance is valuable and used for either understanding, classifying, or quality control testing pharmacodynamical behavior of the therapeutic product.
It is well known in the field of physical chemistry of crystalline particulate matter, that dissolution properties and behavior of a crystalline particle, and therefore, of a sample of a crystalline particulate substance featuring a plurality of crystalline particles, in a liquid medium, either in-vitro or in-vivo, are, in varying degrees, related to and functions of morphological distribution and/or frequency distribution of physicochemical properties and characteristics, such as concentration, density, particle size, particle geometry, particle shape, particle porosity, and crystallographic parameters of crystal type and crystal class, of the crystalline particulate substance. Thus, measuring and determining data and information about the crystalline particle physicochemical properties and characteristics, are useful for highly accurately and reproducibly determining, understanding, classifying, and testing dissolution properties and behavior of the crystalline particulate substance. This relationship is clearly applicable to laboratory analytical testing of chemically pure crystalline particulate substances extensively performed by the biopharmaceutical, and, food and beverage industries, as described above.
There are extensive prior art methods, devices, and systems, relating to accurately and
Choobin Barry
Ehrlich Ltd. G. E.
Green Vision Systems Ltd.
Johnson Timothy M.
LandOfFree
Method for generating intra-particle crystallographic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for generating intra-particle crystallographic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for generating intra-particle crystallographic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3340641