Chemistry of inorganic compounds – Hydrogen or compound thereof – Elemental hydrogen
Reexamination Certificate
2000-08-16
2004-01-20
Silverman, Stanley S. (Department: 1754)
Chemistry of inorganic compounds
Hydrogen or compound thereof
Elemental hydrogen
C423S418200, C423S437200, C252S373000
Reexamination Certificate
active
06680044
ABSTRACT:
FIELD OF THE INVENTION
The present invention is a chemical reactor and method for gas phase reactant catalytic reactions.
As used herein, the term “molecular diffusion” is used in its classic sense of the transfer of mass based upon Brownian motion between adjacent layers of fluid in laminar, transition, or turbulent flow, and includes transfer of mass between adjacent layers of fluid that are stagnant.
As used herein, the term “Knudsen diffusion” means Knudsen flow, or free molecule flow, wherein the mean free path of the molecules is long compared to a characteristic dimension of the flow field, for example the pore size of a material through which the molecules are diffusing. In Knudsen diffusion, molecules typically collide with walls rather than with other gas phase molecules.
BACKGROUND OF THE INVENTION
Many catalytic reactions begin with gas phase reactants, for example steam reforming, partial oxidation, water gas shift and others. However, equipment, specifically reactor volume is generally large because of mass and heat transfer limitations. Conventional reactors are operated with a gas hourly space velocity from about 1,000 to about 3600 hr
−1
. In other words, contact time is greater than 1 second because of the heat and mass transfer limitations.
These problems have been recognized and research is considering microchannel reactors because the microchannels have been shown to offer less resistance to heat and mass transfer thus creating the opportunity for dramatic reductions in process hardware volume. Several types of microchannel reactors have been described in the literature.
Franz et al., 1998 and Lowe et al., 1998 report applying a coating of the active catalyst (such as Pt, Ag, or other noble metal) directly to the microchannel wall. This approach has the disadvantage that the only usable surface area is that of the microchannel wall.
Weissmeier and Honicke, 1998a-b report creating a porous interface directly from the microchannel wall material onto which the catalyst is deposited. An aluminum wall was anodized to create the porous alumina interface that had an average pore diameter in the nanometer size range (permitting only Knudsen diffusion) and a thickness in the range of tens of microns. Disadvantages of this approach include that it is only applicable for aluminum, and limited surface area. The anodized walls formed a two-dimensional array of 700 identical microchannels.
Tonkovich/Zilka et al., 1998 reported packing catalytic powders directly within an array of parallel microchannels as a packed microbed. A disadvantage was a tendency to create relatively large pressure drops by forcing the fluid to flow through the packed microbed.
Tonkovich/Jimenez et al., 1998 reported placing a palladium catalyst supported on a metallic nickel foam within a cavity (more than an order of magnitude larger than a microchannel) and then sending the effluent to an array of microchannels to exchange heat. Again, a disadvantage was large pressure drop through the metal foam.
Hence, there is a need for a chemical reactor for catalytic reactions with fast kinetics that has a small reactor volume with a low pressure drop.
BACKGROUND REFERENCES
Franz, A. J., Quiram, D., Srinivasan, R., Hsing, I-M., Firebaugh, S. L., Jensen, K. F., and M. A. Schmidt, 1998, New Operating Regimes and Applications Feasible with Microreactors, Proceedings of the Second International Conference on Microreaction Technology, New Orleans, La., p 33-38.
Lowe, H., Ehrfeld, W., Gebauer, K., Golbig, K., Hausner, O., Haverkamp, V., Hessel, V., and Richter, Th., 1998, Microreactor Concepts for Heterogeneous Gas Phase Reactions, Proceedings of the Second International Conference of Microreaction Technology, March 1998, New Orleans, La., p. 63-74.
Tonkovich, A. Y., Zilka, J. L., Powell, M. R., and C. J. Call, 1998, The Catalytic Partial Oxidation of Methane in a Microchannel Chemical Reactor, Proceedings of the Second International Conference of Microreaction Technology, March 1998, New Orleans, La., p. 45-53.
Tonkovich, A. Y., Jimenez, D. M., Zilka, J. L., LaMont, M., Wang, Y., and R. S. Wegeng, 1998, Microchannel Chemical Reactors for Fuel Processing, Proceedings of the Second International Conference of Microreaction Technology, March 1998, New Orleans, La., p. 186-195.
Weissmeier, G., and Honicke, D., 1998a, Strategy for the Development of Micro Channel Reactors for Heterogeneously Catalyzed Reactions, Proceedings of the Second International Conference on Microreaction Technology, New Orleans, La., p. 24-32.
Weissmeier, G., and Honicke, D., 1998b, Microreaction Technology: Development of a microchannel reactor and its application in heterogeneously catalyzed hydrogenation, Proceedings of the Second International Conference on Microreaction Technology, New Orleans, La., p. 152-153.
SUMMARY OF THE INVENTION
The present invention provides a chemical reactor including: at least one reaction chamber comprising at least one porous catalyst material and at least one open area wherein each of said at least one reaction chamber has an internal volume defined by reaction chamber walls. The internal volume has dimensions of chamber height, chamber width and chamber length. The at least one reaction chamber comprises a chamber height or chamber width that is about 2 mm or less. At a point where the chamber height or the chamber width is about 2 mm or less, the chamber height and the chamber width define a cross-sectional area. The cross-sectional area comprises a porous catalyst material and an open area, where the porous catalyst material occupies 5% to 95% of the cross-sectional area and where the open area occupies 5% to 95% of the cross-sectional area. The open area in the cross-sectional area occupies a contiguous area of 5×10
−8
to 1×10
−2
m
2
and the porous catalyst material has a pore volume of 5 to 98% and more than 20% of the pore volume comprises pores having sizes of from 0.1 to 300 microns.
In another aspect, the invention provides a chemical reactor including at least one reaction chamber in which there are catalyst rods, plates or baffles having a length to thickness ratio of at least 10, and wherein the at least one reaction chamber has an internal volume defined by reaction chamber walls. The internal volume has dimensions of chamber height, chamber width and chamber length; and the at least one reaction chamber comprises a chamber height or chamber width that is 2 mm or less. The catalyst rods, plates or baffles are disposed in said reaction chamber such that the pressure drop across the reaction chamber is less than 20% of the total system inlet pressure.
In another aspect, the invention provides a chemical reactor including at least three layers. A first layer comprising a first porous catalyst material; a second layer comprising a heat exchanger and at least one fluid flow path through the second layer. The second layer is disposed in the reaction chamber such that fluid passing through the first porous catalyst material can pass through the at least one fluid flow path, and a third layer comprising a second porous catalyst material where the third layer is disposed in the reaction chamber such that fluid passing through the second layer can pass into the second porous catalyst material. The first layer includes continuous channels having dimensions of channel height, channel width and channel length. The continuous channels have a channel height and/or channel width of 0.1 micrometer to 2 mm or less. The first porous catalyst material has a pore volume of 5 to 98% and more than 20% of the pore volume comprises pores having sizes of from 0.1 to 300 microns.
The invention also includes a method of hydrocarbon steam reforming. In this method, a reactant stream comprising steam and hydrocarbon is passed into at least one reaction chamber. The reaction chamber has an internal volume having dimensions of chamber height, chamber width and chamber length. The chamber height or chamber width is 2 mm or less. Each reaction chamber has a beginning and an end. The chamber
Fitzgerald Sean P.
Marco Jennifer L.
Roberts Gary L.
Tonkovich Anna Lee Y.
VanderWiel David P.
Battelle (Memorial Institute)
May Stephen R.
Medina Maribel
Rosenberg Frank S.
Silverman Stanley S.
LandOfFree
Method for gas phase reactant catalytic reactions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for gas phase reactant catalytic reactions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for gas phase reactant catalytic reactions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3238384