Compositions: coating or plastic – Coating or plastic compositions – Alkali metal silicate containing
Reexamination Certificate
1999-09-24
2002-02-26
Marcantoni, Paul (Department: 1755)
Compositions: coating or plastic
Coating or plastic compositions
Alkali metal silicate containing
C264S333000
Reexamination Certificate
active
06350308
ABSTRACT:
BACKGROUND OF THE INVENTION
The present application relates broadly to heat insulating materials and, more precisely, to building products, especially those produced according to a formulation that produces a heat insulating material that can withstand a broad range of temperatures and which is formed through an exothermic reaction that is initiated at normal room temperature conditions or at lower, even cold, temperatures without requiring a heating source.
There are certain known means for producing heat insulating materials for a variety of purposes or equipment, each usually requiring some external heat source. The resulting heat insulating material is therefore not formed during normal room environmental conditions, which can make the production of heat insulating material in large-dimensional constructed forms difficult and expensive due to energy and control requirements. Additionally, the currently known heat insulating materials often do not have a resistance to heat that exceeds 900° C., which consequently narrows the potential range of their application. In addition, it may become desirable to form building materials at a construction site or “in the field.” This is a virtual impossibility with materials requiring an external heat source.
For another example, U.S. Pat. No. 4,110,499 discloses a heat protective material that requires the material to be subjected to temperatures in the range of 2000° F. to 2500° F. in order to obtain maximum strength. U.S. Pat. No. 5,015,606 discloses a lightweight ceramic material for building purposes that is produced by firing a foamed mixture at temperatures above 600° C. Further, U.S. Pat. No. 5,312,806 discloses mineral fibers that are for use in thermal insulation, which is made through a process that requires a coke-heated cupola furnace that operates at temperatures in the range of 1565° C. to 1605° C. When the production of heat insulating material requires the use of an external heat source, the process for such production leads to a significant increase in the heat insulating material's costs.
Moreover, there are currently known heat insulating materials that use iron silicon and which may need to have heat firing during the production of the heat insulation materials. For example, a known method for making highly porous items for heat insulating equipment, consists of the use of a mixture into which a finely milled metallic silicon or iron silicon is introduced with a finely dispersed material, such as diatomite, trepel or marshalite. A liquid glass, or, as is known, a water glass, is then added in the amount necessary for turning the mixture into a thick creamy consistency. The mixture is then thoroughly mixed and heated, causing the iron silicon or silicon to react in the alkaline medium of liquid glass.
For another example, U.S. Pat. No. 4,171,985 discloses the use of iron silicon with water glass in the temperature range from 5° to 90° C. in which the unaided reaction may take 24 hours to come to completion, so that heating to 90° C. is suggested “as a matter of course.” The problem with this above-described process is that the chemical reaction which produces the heat insulating material either does not start at all without heating or requires a long time to come to completion without heating. Additionally, when heat is required for the chemical reaction, the hardening of the mixture occurs during post-reaction cooling. This limits the applicability of such a mixture or process in large-dimensioned constructed forms because of associated dimensional changes. Further, the process described in the 985 Patent requires the use of the water-soluble alkali silicate, alumina cement, a metal base foaming agent and a foam stabilizing agent to produce its heat insulating material. The use of these four elements limit the applicability of the heat insulating material production during field conditions and in construction forms of large dimensions that do not have an external heat source.
In order to overcome the above-mentioned defects in the previously mentioned heat insulating building materials, there is a need for specific building materials formed from a formulation for heat insulating material and a method for making the same that includes a self-starting chemical reaction that leads to a dimensionally stable, structurally strong product and which initiates at normal room or lower temperatures which eliminates the need for external heating or firing. Further, there is a need for building materials formed from a heat insulating material with a relatively low density with increased the hardness characteristics. Additionally, there is a need for such building materials formed from heat insulating material that provided lower material costs and provides building material possessing adhesive and cohesive properties. Furthermore, there is a need for building materials formed from heat resistant and heat insulating materials with dielectric properties that work in conditions of normal, low and high temperatures.
SUMMARY OF THE INVENTION
It is accordingly an object of the present invention to provide building materials formed from heat insulating material with a relatively low density yet with increased hardness characteristics.
Further, it is an other object of the present invention to provide such building materials formed from the heat insulating material that provides lower material costs and provides adhesive and cohesive properties.
It is another object of the present invention to provide such building materials formed from heat resistance and heat insulating materials with dielectric properties that work in conditions of normal, low and high temperatures.
To those ends, a method for making a heat insulated reinforced block of building material includes providing a mold configured with inner dimensions equal to a desired configuration of the block of building material, providing a fluid mixture of heat insulating material formed from a predetermined composition of ingredients; providing at least one rigid reinforcement member; placing the at least one reinforcement member in the mold; introducing the fluid mixture into the mold with the at least one reinforcement member; allowing the fluid mixture to harden within the mold and removing the mixture from the mold, resulting in a block of reinforced heat insulated building material.
It is preferred that the step providing a fluid mixture of heat insulating material includes providing the fluid mixture of heat insulating material formed from a composition of the following ingredients and the following amounts:
Water Glass
32-52% by weight
Sodium Hydroxide
3-4% by weight
Filler
25-36% by weight
Iron Silicon
20-22% by weight
Preferably, the step placing the at least one reinforcement member in the mold includes placing the reinforcement member in the mold in a disposition where in at least a portion of the reinforcement member forms at least a portion of an outer surface of the block of building material and extends longitudinally along the block.
It is further preferred that the step of providing at least one rigid reinforcement member includes providing a plurality of reinforcement members and the step of placing at least one reinforcement member in the mold includes placing a predetermined number of reinforcement members in the mold with at least a portion of the predetermined number of reinforcement members forming at least a portion of an outer surface of the block. It is preferred that the step of providing a fluid mixture of heat insulating material includes providing heat insulating material formed with the ingredients at temperatures in the range between room temperature and approximately minus 10° C. Preferably, the step of providing heat insulating material includes providing heat insulating material as formed through an exothermic reaction that produces a formulation that hardens without the use of an external energy source. It is further preferred that the step of providing a fluid mixture of heat insulating material includes providing a filler formed from firi
Marcantoni Paul
McGuireWoods LLP
RADVA Corporation
LandOfFree
Method for forming insulated products and building products... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for forming insulated products and building products..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming insulated products and building products... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2968950