Method for forming films or layers

Coating processes – Optical element produced

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S250000, C427S255600

Reexamination Certificate

active

06605317

ABSTRACT:

This application is a national stage application of PCT/GB99/04030 filed Dec. 1, 1999. PCT/GB99/04030 was published in English under publication number WO 00/32719 on Jun. 8, 2000.
The present invention relates to a method of forming films or layers of organic-metallic complexes and more particularly it relates to a method of forming organic-metallic complexes and depositing them on a substrate.
When Conning a complex of an organic ligand and a metal, a salt of the metal and the organic ligand are reacted together under the appropriate conditions in solution in a suitable solvent. A very large number of reactions are well known and a very large number of organic-metallic complexes are known and are formed by this process.
A particular class of organic-metallic complexes are formed transition metals. lanthanides and actinides and these complexes have a very large range of applications in catalysis, electrical and electronic devices etc.
Some organic-metallic complexes have electroluminescent or pliotoluminescent properties and have been described in an article in Chemistry, Letters pp 657-660, 1990 Kido et al and in an article in Applied Physics Letters 65 (17) Oct. 24 , 1994 Kido et al but these were unstable in atmospheric conditions and difficult to produce as films.
Photoluminescent complexes which arc rare earth chelates which fluoresce in ultra violet radiation are known and A. P. Sinha (Spectroscopy of Inorganic Chemistry Vol. 2 Academic Press 1971) describes several classes of rare earth chelates with various monodentate and bidentate ligands.
Group III A metals and lanthanides and actinides with aromatic complexing agents have been described by G. Kallistratos (Chimica Chronika, New Series. 11, 249-266 (1982)). This reference specifically discloses the Eu(III), Ib(III) and U(III) complexes of diphenyl-phosponainidotriphienyl-phosphoran.
EP 0744451A1also discloses fluorescent chelates of transition or lanthanide or actinide metals.
When forming an electroluminescent or photoluminescent device which incorporates an organic-metallic complex as the clectroluminescent or photoluminescent active material, a film of the electroluminescent or photolumincscent compound has to be formed on a substrate. This is normally done by deposition of the compound from solution onto the substrate so as to obtain a film or layer of the right thickness etc.
The organic-metallic complex can be formed in solution and deposited from this solution or it can be separated and dissolved in another solvent and deposited from this solution etc. or it can be finned by vacuum evaporation of the solid material.
We have invented an improved method of forming a film or layer of an organic-metallic complex on a substrate which does not require a solution to be formed nor does it require multiple syntheses.
According to the invention there is provided a method for forming a film or layer of an organic-metallic complex on a substrate which method comprises vaporising a metal compound and vaporising an organic complex and condensing the vapour on to a substrate to form a film or layer of the organic-metallic complex on the substrate.
In one embodiment the invention comprises mixing a powder comprising a metal compound with a powder comprising an organic complex heating the mixture formed under a vacuum so that the mixture is vaporised and condensing the vapour on to a substrate to form a film or layer of the organic-metallic complex on the substrate.
In another embodiment of the invention the metal compound and the organic complex are vaporised sequentially.
The term vaporised includes all forms of going from the solid state to the vapour or gaseous state such sublimation etc.
The invention is particularly useful with transition metals, lanthanides and actinides which can form stable and useful complexes with organic ligands by this method.
The metal preferably is in the form of a salt such as a halide e.g. chloride or bromide which is labile so that it can be vaporised or sublimed, or an organic-metallic compound e.g. diketo complexes, acetyl acetonates, although any metal compound which will vaporised under the conditions can be used.
The invention is particularly useful for the preparation of films or layers of photoluminescent and electroluminescenf compounds including those incorporating lanthanides or actinides such as samarium, dysprosium, lutetium, thorium, yttrium gadolinium, curopium, terbium, uranium and cerium in the appropriate valence states. Any metal ion having an un filled inner shell can be used as the metal and the preferred metals are Sm(III), Eu(III), Tb(III), Dy(III), Yb(III), Lu(III), Gd(III), Eu(II), CE(III), Gd(III) U(III), UO
2
(VI), Th(III), as well as metals with an incomplete inner shell e.g. Th(IV), Y(III), La(III), Ce(IV).
Mixtures of more than one metal compound and more than one organic complex can be used to obtain a range of mixed organic-metallic complexes. This can be achieved by mixing the compounds before vaporisation or by vaporising the compounds sequentially so as to obtain a multilayered or a mixed layer comprising organic-metallic complexes.
In another embodiment of the invention the metal compound can be deposited on the substrate an d then a mixture of the metal compound and the organic compound deposited by vaporisation of a mixture of these to obtain various types of layered structures.
The organic ligands in the organic-metallic complex formed can be any organic complex which can react with the metal compound to form an organic-metallic complex or which, when co-deposited with the organic complex forms an organic-metallic complex. It may be, particularly with sequential deposition that the organic-metal complex formed has a variable composition through the layer.
The organic ligands which can be used include
where R′ is the same or different at different parts of the molecule and each R″ and R′ is a hydrocarbyl group e.g. alkyl, a substituted or unsubstituted aromatic or heterocyclic ring structure a fluorocarbon or R″ is—CF
3
or hydrogen or R″ is copolymerised with a monomer e.g. or R′ is t-butyl and R″ hydrogen.
Preferably each of R′, R″, and R′ is an alkyl group preferably a −C(CH3) group. or
where X can be the same or different in each case and can be H, F. Me, Et, OMe, or OEt.
Preferred organic complexes are 2,2,6.6-tetramethyl-3,5-heptailedionato(TMHD); (&agr;′
7
&agr;″

&agr;′″ tripyridyl, dibenzoyl methane(DBM), diphenylphosphonimide triphenyl phosphorane(OPNP), bathophen (4,7-diphenyl-1,1-pheanthroline), 1,10 phenanthroline (Phen) and crown ethers, cryptands, substituted calix(4)arene based ligands and other organic complexes
Particularly preferred organic-metallic complexes are the Th, Y, Eu. Dy, and SM complexes of tripyridyl and TMDH and complexes such as thorium bathophen. yttrium tripyridyl and TMHD, and europium (III) (TMHD)
3
complexes, terbium (TMHD)
3
OPNP, europium (II) (TMHD)
2
and europium (II) (TMHD)
2
OPNP.
The organic complex used to form the organic-metallic complex should be in a form which is stable in powder form under the conditions of the vaporisation, for organic complexes which arc unstable in oxygen an inert atmosphere can be used.
When mixed powders of the metal compound and the organic complex are vaporised they should be of a size such that intimate mixing can take place. compounds can be bought commercially in powder form and these arc often suitable without further treatment if smaller size particles are required, the starting material can be ground. If the organic complex is formed by precipitation from a solution this can be formed as a powder which, after drying, can be mixed with the metal compound.
In one embodiment of the invention an organic-metallic complex such as a complex of a transition metal, lanthanidc or actinide and any of the above specified organic ligands is mixed with an organic complex e.g. as referred to above and the resultant mixture heated in vacuum to vaporised the mixture and to deposit the org

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for forming films or layers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for forming films or layers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming films or layers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3101908

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.