Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Matrices
Reexamination Certificate
1997-01-07
2001-02-06
Webman, Edward J. (Department: 1617)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Matrices
C424S489000, C424S501000, C264S140000, C264S141000, C514S951000
Reexamination Certificate
active
06183781
ABSTRACT:
BACKGROUND OF THE INVENTION
An area of current research focus in the pharmaceutical industry is the development of methods for the controlled or sustained release of drugs. Such methods obviate certain problems associated with traditional methods for administering drugs, such as noncompliance of patients with a prescribed medication schedule, the need for multiple injections, and fluctuating concentrations of the drug in the body. These problems are particularly acute when the drug is a protein or peptide. Such drugs frequently have short in vivo half-lives. In addition, protein-based drugs cannot be administered orally in an unprotected state due to the rapid degradation that occurs in the digestive tract.
Methods for sustained or controlled drug release can utilize an implanted device, such as an osmotic pump, or a drug dispersed in a biocompatible polymer matrix, which can be implanted, administered orally or injected. Polymers often used in such applications include poly(lactic acid) and poly(lactic acid-co-glycolic acid). Both polymers undergo slow hydrolysis in vivo, releasing the entrapped drug. The polymer degradation products are the parent acids, which are absorbed by the body.
Polymer/drug matrix particles to be administered via injection must have a size range typically on the order of 200 microns or less. The size and morphology of polymer/drug matrix particles depends upon the fabrication method employed, and the formation of small polymer/drug matrix particles in which the drug is a protein is currently limited to a few techniques. For example, polymer/protein matrix particles comprising poly(lactic acid) and either trypsin or insulin, were prepared by both an oil/water emulsion method and a neat mixing method at elevated temperature (Tabata et al.,
J. Cont. Release
23: 55-64 (1993)). The polymer/protein matrices thus formed were subsequently ground into granules. The granules prepared by the neat mixing method lost a significant fraction (10%) of protein activity, possibly due to the heating step. These granules also suffered from a large initial burst of protein release. The granules prepared by the oil/water emulsion method lost an even greater amount (about 40-60%) of protein activity, possibly caused by protein lability with respect to the oil.
A method for forming injectable polymer/drug matrix microparticles was disclosed by Wise (Wise in
Biopolymeric Controlled Release Systems
, Vol.1, Wise, ed., CRC Press:Boca Raton, Chapter 8 (1984)). Microparticles comprising poly(lactic acid-co-glycolic acid) and the narcotic antagonist naltrexone were formed by cryogenic grinding of beads or rods of a solid polymer
altrexone matrix. The beads and rods were formed by molding a polymer
altrexone matrix film into the desired shape at a temperature above the softening point of the polymer. Thus, this method is not suitable for the preparation of polymer/drug matrix microparticles incorporating a thermally labile drug, such as many proteins, peptides and polynucleotides and analogs.
Another example, disclosed in U.S. Pat. No. 5,019,400, issued to Gombotz et al., the contents of which are incorporated herein by reference, is a method for producing polymer/protein microspheres. This method involves atomizing a mixture comprising a biocompatible polymer and a drug substance, and freezing the resulting aerosol droplets. In this method, particle size and shape depend upon the method of atomization and the flow rate of the polymer solution through the atomizer. A number of variables are tightly controlled in order to optimize reproducibility in particle sizes and morphologies.
Current methods for the formation of polymer/drug matrix implants suffer from drawbacks when utilized with thermally labile or organic solvent labile drugs. These methods employ harsh conditions, such as elevated temperatures (greater than about 45° C. and/or aqueous/organic emulsions, which can result in a significant loss of drug activity. Other methods utilize a simple mixture of bulk polymer with solid drug, which does not yield a fine microscopic dispersion of the drug within the polymer matrix, resulting in a more erratic drug release in vivo.
The need exists for a method for forming polymer/drug matrix devices suitable for injection or implantation in which the solid polymer/drug matrix is formed by methods suitable for thermally sensitive drugs, as well as drugs sensitive, under certain conditions, to organic solvents, while still achieving a substantially uniform distribution of the drug throughout the matrix. In addition, the method must be amenable to scale-up, and to performance in a closed, sanitized environment to enable the efficient, economical manufacture of polymer/drug matrix controlled release devices meeting FDA sterility requirements.
SUMMARY OF THE INVENTION
The present invention relates to a method for forming polymer-encapsulated drug microparticles (hereinafter referred to as “polymer/drug matrix microparticles”). The method comprises (1) forming a polymer solution/drug mixture comprising a polymer-dissolved in an organic solvent and a co-dissolved or suspended drug; (2) removing the solvent from the polymer solution/drug mixture, thereby forming a solid polymer/drug matrix; and (3) fragmenting the polymer/drug matrix at a temperature below the glass transition temperature of the polymer/drug matrix, thereby forming polymer/drug matrix microparticles. The polymer/drug matrix can be fragmented by, for example, grinding or milling. In one embodiment, the polymer/drug matrix is formed by removing the solvent from a polymer solution/drug mixture, for example, by freezing the polymer solution/drug mixture and extracting the solvent from the resulting solid polymer solution/drug matrix.
In one embodiment, the polymer solution/drug mixture is frozen by, for example, pouring, dripping, atomizing or extruding the mixture into a liquid nonsolvent which is at a temperature below the freezing point of the polymer solution/drug mixture. The polymer can be any biocompatible polymer, such as poly(lactic acid) or a poly(lactic acid-co-glycolic acid) copolymer. The drug can be a therapeutic, prophylactic or diagnostic agent, such as a protein, nucleic acid or small organic molecule.
Another embodiment of the present invention includes the polymer/drug matrix particles that are formed by the method outlined above. Preferably, these particles are microparticles. These comprise a biocompatible polymer, such as poly(lactic acid) or a poly(lactic acid-co-glycolic acid) copolymer, a drug, such as a therapeutic, prophylactic or diagnostic agent, and, optionally, one or more excipients or release modifiers, such as a metal-containing salt.
A further embodiment of the present invention is a method for forming an implantable polymer/drug matrix mass. The method comprises the steps of (1) forming a polymer solution/drug mixture comprising a polymer dissolved in an organic solvent and a co-dissolved or suspended drug; (2) removing the solvent from the polymer solution/drug mixture, thereby forming a solid polymer/drug matrix; and (3) mechanically compressing the polymer/drug matrix, thereby forming an implantable polymer/drug matrix mass. The invention also includes a implantable drug/polymer matrix mass produced by this method. The method, thus, produces a substantial dispersion of the drug substance throughout the polymer matrix without using heat extrusion.
The method described herein offers the advantage of uncoupling the polymer/drug matrix fabrication step from the fragmentation or compression step, which determines the polymer/drug matrix device size and morphology. The method allows the use of fabrication methods employing mild conditions, for example, low temperature. Thus, the method is particularly well-suited for thermally labile drugs, such as many proteins, polypeptides and polynucleotides. The method also enables the formation of the polymer/drug matrix without dissolving the drug in an organic solvent, or bringing an aqueous solution of the drug into contact with an organic solvent. Ce
Alkermes Controlled Therapeutics Inc.
Hamilton Brook Smith & Reynolds P.C.
Webman Edward J.
LandOfFree
Method for fabricating polymer-based controlled-release devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for fabricating polymer-based controlled-release devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating polymer-based controlled-release devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2614869