Method for fabricating arrays of micro-needles

Semiconductor device manufacturing: process – Making device or circuit emissive of nonelectrical signal – Making emissive array

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S042000

Reexamination Certificate

active

06551849

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to micro-sized devices that can be used to manipulate very small quantities of gases or liquids, or as conductive probes or neural stimulators, or to provide a plurality of test surfaces for gene probes, and more specifically to methods for fabricating arrays of such micro-sized structures.
BACKGROUND OF THE INVENTION
In scientific fields such as micro-fluidics and combinatorial chemistry it is often necessary to manipulate very small quantities of gases or liquids is required, for example volumes as small as a picoliter or so. Understandably it is difficult to fabricate hollow micro-needles dimensioned for such tasks, especially where needle lengths exceeding
1
mm are required. Without limitation, such micro-needles can or should find application in the dispensing and manipulation of DNA samples, in fabricating so-called gene IC chips for example.
Conventional DNA sampling is often carried out using an array of perhaps forty-eight needles, a relatively low number. The needles in the array are typically rigid, made of stainless steel, and are rather expensive. Various of the needles are exposed to a solution that may contain DNA or other biological or chemical materials, and the needle tips are then urged against regions on a substrate. Substrate regions may be coated with various DNA, biological, or other chemical samples, with which the materials transported via the needles may react. A very real problem is avoiding fracturing the needles as they meet the typically rigid glass substrate, and avoiding cross-contamination between various sample solutions. Often the needles are individually spring loaded, and the relatively non-dense arrays help guard against cross-contamination. But it would be desirable to use probe arrays containing thousands or tens of thousands or more of individual needle-probes. It would be highly useful to be able to provide a substrate useable with such dense arrays of needle probes, or indeed useful with existing rigid low density probes, which substrate would be somewhat flexible and would define different test regions.
In a standard gene chip or gene cell procedure, the chips are patterned with an array of spots of distinct DNA samples. The chip is then exposed, for example by soaking in a solution containing cDNA samples taken from a piece of tissue, a tumor perhaps. More specifically, RNA is taken from the tissue and converted into corresponding DNA, which is then replicated via PCR. Thus in standard gene chips, when the needles deposit their samples the chip will be bare or empty. But in combinatorial chemistry, or in material science applications, samples may already be present.
In other fields, small preferably solid micro-needles are desired as probes to sense electrical signals, or as probes to apply stimulation electrical signals, such as from neural tissue or other complex media. Without limitation, suitably sized hollow and/or solid micro-needles could find application in neural stimulation, sensing, sampling, injection, light absorbing sensors, and light emitting surfaces. Other applications should include micro-scale or nano-scale “stamps” such as so-called cookie-cutter tools used in micro-scale or nano-scale applications. Appropriate micro-needles should also find application as electron emitters, for example in high electric field avalanche multiplier structures. Appropriate micro-needles should also find use in gaseous-based or liquid-based detectors of ionizing radiation. Appropriate hollow micro-needles may also be used as extrusion nozzles in micro-sale or nano-scale applications.
Thus there is a need for a method to produce micro-needles, and arrays of such micro-needles, that may be hollow or solid in cross-section, and that preferably are electrically conductive, yet can be fabricated to be electrically isolated from each other. The method should produce micro-needles with diameters that can range from a few nanometers to several millimeters, with height/diameter aspect ratios ranging from under unity to more than one thousand. In cross-section, the resultant mold or micro-needle structures may have any configuration, including circular, rectangular, triangular, line segment, filled-in polygons, hollow polygons, etc. Depending upon materials used, e.g., thermal oxide, tungsten, etc., the resultant structures should function at temperatures exceeding 1,000° C.
Further, there is a need for a method to produce preferably flexible substrates that can define a dense array of individual surfaces suitable for micro-needle probing in a gene chip application. The flexibility of such substrates would minimize needle probe breaking and the individual surfaces formed on the substrate would minimize cross-contamination of samples.
Preferably a method of producing such structures should use techniques and equipment presently available for fabrication in the semiconductor industry. Once fabricated, such micro-needles, arrays, and substrates should find use in any or all of the various applications noted above.
The present invention provides such fabrication method for producing such micro-sized structures and arrays of such structures.
SUMMARY OF THE INVENTION
Solid and hollow micro-needle structures and arrays of such structures are fabricated by forming an electrical insulating layer on a standard silicon wafer. At least one wafer surface is polished, and is array-patterned. Material is then etched away from the bulk of the wafer through the pattern to form cavities where micro-needles are desired to be formed. The etch depth extends into the wafer a length corresponding generally to a desired length of the micro-needles to be formed. The etching forms a plurality of cavities extending from the wafer top into the bulk of the wafer. The cavities may taper inward or outward, be cylindrical or indeed have an hourglass or other shape, depending upon the techniques used to remove material from the wafer bulk.
The cavity cross-section dimensions may range from a few nanometers to several millimeters, and the height/diameter aspect ratios may range from less than one to greater than one thousand. Pitch density may range from about 1 &mgr;m to about 1 cm. In cross-section, the mold cavities may have any desired configuration including circular, rectangular, triangular, line segment, filled-in polygons, hollow polygons, etc. Different mold cavities within an array may have different dimensions and shapes, if desired. Cavity depth may range from about 1 &mgr;m to the thickness of the wafer, perhaps 1 cm or so.
A sacrificial layer of polysilicon may now be deposited into the newly etched holes. The profile of what will be micro-needles is substantially vertical except near the distal tip, and such use of polysilicon can substantially increase the final height/diameter aspect ratio of the finished micro-needles.
At this juncture, the substrate may be used as a mold, in that the substrate defines an array of cavities extending into the substrate bulk. If electrically conductive micro-needles are to be formed, the cavities may be filled with an electrically conductive material, e.g., gold, tungsten, copper, nickel, perhaps aluminum, doped polysilicon. If it is desired to produce non-conductive micro-needles, the cavities may be filled with a non-conductive material, e.g., glass. In either case, substrate bulk material is then removed from the bottom of the wafer upwards to expose a desired length of the now conductive material filled micro-needles. If desired, electrically conductive contact pad, traces and wire bond pads may be fabricated to couple electrical signals to individual ones of the micro-needles in the resultant array. The micro-needles adopt the size and shape of the cavities formed in the mold.
If desired, the mold formed in the wafer bulk may be used to form a flexible substrate for DNA gene cell applications, in which individual elevated substrate regions or plateaus are defined by the cavities in the substrate. Cavity depth would determine plateau height, which is to say well dept

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for fabricating arrays of micro-needles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for fabricating arrays of micro-needles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating arrays of micro-needles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3066742

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.