Semiconductor device manufacturing: process – Making passive device – Planar capacitor
Reexamination Certificate
2001-12-10
2003-05-20
Chaudhuri, Olik (Department: 2823)
Semiconductor device manufacturing: process
Making passive device
Planar capacitor
C438S396000, C438S680000, C438S627000, C438S631000
Reexamination Certificate
active
06566220
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a method for fabricating a semiconductor memory component that includes a barrier layer that insulates the lower electrode of a storage capacitor from a silicon substrate. The method includes steps of: applying a barrier layer; patterning the barrier layer prior to applying a storage capacitor with a hard mask; and removing the hard mask that remains after the patterning so as to uncover the patterned barrier layer. A method including these steps is known, for example, from U.S. Pat. Nos. 5,464,786, 5,506,166, and U.S. Pat. No. 5,581,436.
Furthermore, it is known from International Publication WO 99/27581 to provide an insulation layer, with a contact plug inside it, on a substrate. A dielectric with a recess is formed on the insulation layer, and a barrier layer is provided on this structure as a diffusion barrier. Then, a lower electrode layer, a dielectric layer and an upper electrode layer for a storage capacitor are deposited. Next, a buffer layer, which covers the structure and fills up the remaining recess, is deposited. Finally, in a chemical mechanical planarization step, the buffer layer is eroded down to the barrier layer, and then the barrier layer which has been uncovered at the surface is removed.
The corresponding semiconductor memory components include at least one storage capacitor having a storage medium that includes a ferroelectric thin film or a thin film with a high dielectric constant. When using storage media of this type, annealing processes at high temperatures are required, characteristically of the order of magnitude of 800° C., in an oxidizing environment including, in particular, a process gas of oxygen. Material diffusion processes, for example, through partial oxidation of polysilicon plugs, which are used to make contact with the silicon substrate, must be avoided, since they may impair the semiconductor memory component or even cause it to fail.
To prevent material diffusion processes, diffusion barriers or sandwiches of such barriers in combination with adhesion layers, for example, consisting of Ir, IrO
2
, IrO, are used. In the text which follows, these structures are referred to overall as barriers or barrier layer. These barriers are arranged between the storage capacitor and the silicon substrate. For example, the lower electrode, known as the bottom electrode of the storage capacitor, which typically consists of Pt, Ru, RuO
2
, is applied to the barrier layer. To ensure optimum adhesion of the lower electrode to the barrier, the barrier layer must have a planar contact face which is as large as possible. Moreover, the lowest possible contact resistance is required, especially as electrode thin films usually exhibit poor adhesion to the silicon substrate.
The barrier layers can only be patterned with difficulty in the plasma, since they form insufficient or nonvolatile compounds in the process chemistry used to transfer the pattern. Therefore, the patterning has hitherto preferably been carried out by physical sputtering removal of the layers. Consequently, low selectivities with respect to mask materials are achieved during the transfer of the pattern. Moreover, in the case of a barrier layer made from IrO
2
, the oxygen which is released additionally contributes to the removal of the resist. Moreover, the transfer of the pattern leads to a significant change in the CD (critical dimension) and/or to beveled profiles. These beveled profiles are caused by the resist being drawn back in the lateral direction, or by the accumulation of redepositions on the side walls of the pattern that is produced, or from a combination of the two. The redepositions can only be removed with difficulty, if at all.
Moreover, in combination with the application of storage capacitors to a silicon substrate, it is known to use a dielectric hard mask which consists, for example, of SiO
2
, SiN or SION. Since in principle these mask layers are more difficult to erode, higher selectivities can be achieved during a process that uses these mask layers. However, because of the mask beveling that occurs during physical sputtering erosion in the plasma patterning process, the thickness of the mask layer has to be selected to be greater than the thickness which would be required purely through the selectivity, in order to prevent the bevel from being transferred into the layer which is to be patterned. The removal of the mask that remains after the pattern has been transferred, in a plasma etching process, leads to an additional increase in the desired topography of at least the thickness of the mask layer which is to be removed.
Patterning processes of this type are known, for example, from U.S. Pat. Nos. 5,464,786, 5,506,166, 5,581,436. Wet processes for the subsequent erosion of the mask layer are fundamentally unsuitable, on account of the associated additional isotropic undercut etching of the patterns.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method for fabricating a semiconductor memory component that includes a barrier layer that insulates the lower electrode of a storage capacitor from a silicon substrate, which overcomes the above-mentioned disadvantages of the methods of this general type.
In particular, it is an object of the present invention to provide a method of the type described in the introduction which ensures an optimally large surface area or adhesion surface for the barrier layer with respect to the lower electrode of the storage capacitor.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for fabricating a semiconductor memory component having a silicon substrate. The method includes steps of: configuring a barrier layer on a silicon substrate; patterning the barrier layer using a hard mask to obtain a patterned barrier layer prior to configuring a storage capacitor on the substrate; embedding the patterned barrier layer and the hard mask that remains above the patterned barrier layer in an embedding layer; performing a chemical mechanical polishing step to remove the hard mask that remains above the patterned barrier layer, to remove the embedding layer that is above the patterned barrier layer, and to thereby uncover the patterned barrier layer; configuring the storage capacitor on the substrate such that a lower electrode of the storage capacitor is insulated from the silicon substrate by the barrier layer; and constructing the storage capacitor with an upper electrode and with a dielectric layer that is located between the lower electrode and the upper electrode.
In accordance with an added feature of the invention, the chemical mechanical polishing step is stopped at the surface of the barrier layer.
In accordance with an additional feature of the invention, the semiconductor memory component is used in a DRAM or a FeRAM.
In accordance with another feature of the invention, a ferroelectric material is used for the dielectric layer.
In accordance with a further feature of the invention, the barrier layer is designed as either a diffusion barrier or a diffusion barrier sandwich in combination with adhesion layers.
In accordance with a further added feature of the invention, the adhesion layers are made from Ir, IrO
2
, or IrO.
In accordance with a further additional feature of the invention, the hard mask is made from SiO
2
, SiN, or SiON.
In accordance with yet an added feature of the invention, the embedding layer is made from SiO
2
by chemical vapor deposition.
In accordance with a concomitant feature of the invention, the method includes steps of: providing an insulation layer on the substrate; providing a contact plug in the insulation layer;
and providing the barrier layer on the insulation layer as a diffusion barrier.
In other words, the invention provides for the patterned barrier layer, together with the mask layer remaining on it, to be completely embedded in SiO
2
using a CVD (chemical vapor deposition) process. This is followed by a CMP (chemical m
Engelhardt Manfred
Kreupl Franz
Schiele Manuela
Weinrich Volker
Chaudhuri Olik
Garcia Joannie Adelle
Greenberg Laurence A.
Infineon - Technologies AG
Locher Ralph E.
LandOfFree
Method for fabricating a semiconductor memory component does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for fabricating a semiconductor memory component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating a semiconductor memory component will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3091098