Metal working – Method of mechanical manufacture – Shaping one-piece blank by removing material
Reexamination Certificate
1999-04-13
2001-12-11
Bryant, David P. (Department: 3726)
Metal working
Method of mechanical manufacture
Shaping one-piece blank by removing material
C029S006100, C623S001150
Reexamination Certificate
active
06327772
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to stents and other prostheses intended for implantation in blood vessels and other body lumens. In particular, the present invention relates to methods and articles for the fabrication of such stents.
The use of stents and other luminal prostheses is often indicated when there is desire to maintain patency of a body lumen. Stents have commonly been used in blood vessels, the ureter, and the biliary duct, for the treatment of conditions which can result in luminal obstruction. Of particular interest to the present invention, vascular stents have demonstrated significant success in inhibiting restenosis following angioplasty and other primary interventional treatments in the vasculature. Lined stents, often referred to as vascular stent grafts or prostheses, hold great promise for the reinforcement of blood vessels for the treatment of aneurysms and lining of blood vessels for the treatment of occlusive disease among other conditions. In the case of aneurysms, the stent acts as a scaffold or framework for supporting the liner within the blood vessel to define an artificial lumen therethrough. In the case of occlusive disease, the stent maintains lumenal patency while the liner inhibits cellular intrusion into the lumen.
Vascular stents are typically delivered in a radially reduced or constrained configuration and expanded in situ at the target site. The stents may be deformable and balloon-expanded at the target site. Alternatively, the stents may be formed from a resilient material and released from constraint to self-expand at the target site. In a third general approach, the stents are formed from a shape-memory alloy and induced to expand at the target site by exposure to a temperature change. In all such cases, the stent will usually comprise a network or lattice of structural elements which permits configuration in both the radially-reduced and the radially-expanded geometries. One common geometry comprises a plurality of lozenge-shaped or diamond-shaped elements which are joined in a ring and may be expanded from a small diameter configuration to a large diameter configuration. Other common geometries include helically wound wires and filaments, zig-zag rings, serpentine rings, and numerous combinations and derivations of these geometries.
Regardless of the particular stent geometry chosen, manufacture of the stent presents a number of technical challenges. The stents have very small dimensions, often with diameters of 1 mm and below, and may be formed from metals and alloys that are difficult to fabricate, such as shape memory alloys and stainless steel alloys having specific properties. It will be appreciated that the stents which are produced must have highly uniform expansion characteristics, and thus the fabrications methods should result in stents having highly uniform mechanical properties. Moreover, the dimensions must meet very close tolerances and the surface finishes of the stents must be non-injurious and non-thrombogenic.
The most common methods for producing vascular and other stents start with a tube which is then cut or otherwise patterned to have the desired geometry. In many cases, particularly with shape memory alloys, it will be further necessary to heat-treat the resulting stent in order to gain desired expansion properties. Cutting of the tube stock starting material can be effected in a variety of ways. Most commonly, laser cutting is employed. Laser cutting, however, results in significant thermal stresses on the material which can be particularly troublesome when producing shape memory alloy stents. Chemical etching of the tube starting materials have also been proposed. Patterning and etching of tubes, however, is very difficult and expensive to perform.
For these reasons, it would be desirable to provide improved methods and articles for manufacturing cylindrical stents. Such improved methods should preferably be compatible with a wide variety of starting materials, including shape memory alloys, stainless steel alloys, and other materials from which stents are commonly performed. Such methods and articles, moreover, should preferably expose the materials to minimum thermal and other stresses, thus enhancing the dimensional and physical stability of the resulting stents. The present invention will address at least some of these objectives.
2. Description of the Background Art
Methods for laser cutting tube stock are described in U.S. Pat. No. 5,073,694. Methods for etching tube stock to produce vascular stents are described in U.S. Pat. No. 5,421,955. Methods for fabricating stents by winding a serpentine element over a cylindrical mandrel are described in U.S. Pat. No. 5,019,090.
SUMMARY OF THE INVENTION
The present invention provides improved methods for fabricating cylindrical stents from planar articles. The planar articles comprise networks of interconnected elements, and the methods comprise the reforming the planar networks into a cylindrical wall which may form all or part of a stent or other luminal prosthesis. Usually, the planar networks will comprise an annular lattice of element(s), where the lattice may be formed as a continuous path or as a discontinuous path. Usually, the lattice will be continuous and will comprise interconnected elements joined in a complete annular ring. Exemplary geometries include serpentine rings, a plurality of closed peripheral structures, such as interconnected lozenge (diamond)-shaped structures, and the like. Exemplary discontinuous lattices include spirals having a radially inward end and radially outward end. Such spirals may have secondary geometries, such as a superimposed serpentine pattern, and in some cases may be arranged in a rectilinear pattern (in addition to curved spiral patterns).
In the case of annular lattices, the reforming step will comprise everting the annular lattice to the desired cylindrical configuration. By “everting” it is meant that the inner peripheral edge of the annular structure is expanded radially outward relative to the outer peripheral edge of the structure. It will be appreciated that such eversion may be effected either by expanding the inner peripheral edge, contracting the outer peripheral edge, or a combination of both such steps. Often, the everting step will be performed over the exterior surface of a cylindrical mandrel. Alternatively, the everting step could be performed by introducing the annular lattice into a cylindrical tube or lumen, or by other equivalent techniques.
The reformed annular lattices will assume a radially expansible, typically cylindrical, configuration. By “radially expansible,” it is meant that width (diameter in the case of cylindrical structures) can be expanded and/or contracted after reforming. Usually, the structures will be either malleable, in which case they are expanded by application of a radially outward force in their lumens, or self-expanding in which case the initial geometry will be “expanded” and will be radially constrained prior to use. The latter type of stents are usually formed from shape memory alloys or resilient stainless steel and referred to as “self-expanding stents.”
The planar articles of the present invention may be formed in a variety of ways. Usually, they will be formed by patterning a planar sheet of material. Exemplary patterning steps include photochemical etching (usually performed as part of a photolithography process), cutting, stamping, and the like. In an exemplary technique, a plurality of sheets of material may be stacked and simultaneously cut in order to form a plurality of eversible structures in a single fabrication process. Often, at least five sheets of material will be simultaneously cut, preferably at least ten sheets of material, more preferably at least twenty sheets of material, and frequently twenty-five or more sheets of material. The cutting may be performed by conventional techniques, such as electrical discharge machining (wire or plunge EDM), laser cutting, water or abrasive jet cutti
Coombs Craig J.
Cox Brian J.
Gittings Darin C.
Hayes Michael B.
Luehrs Kirsten F.
Bryant David P.
Medtronic Inc.
Sterne Kessler Goldstein & Fox P.L.L.C.
LandOfFree
Method for fabricating a planar eversible lattice which... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for fabricating a planar eversible lattice which..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating a planar eversible lattice which... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2582691