Method for fabricating a microelectromechanical bearing

Stock material or miscellaneous articles – Structurally defined web or sheet – Including aperture

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S131000, C428S141000, C428S156000, C438S703000, C438S704000, C438S745000, C438S756000, C249S061000, C249S114100

Reexamination Certificate

active

06555201

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of electromechanics and more particularly to the field of microelectromechanical devices.
BACKGROUND OF THE INVENTION
Thin film processes developed in the field of microelectronic integrated circuits have been used to produce precision microelectromechanical devices. For example, solid state laser and fiber optic couplings, ink jet nozzles and charge plates, magnetic disk read/write heads, and optical recording heads have been produced using thin film processes including photolithography, sputter deposition, etching, and plasma processing. These thin film processes allow the production of microelectromechanical devices with submicron dimensional control.
One important microelectromechanical device is an electrostatically driven rotating mirror which is used in an optical scanner such as a bar code reader. In particular, an electrostatically driven torsional scanning mirror is discussed in the reference entitled “Silicon Torsional Scanning Mirror” by Kurt E. Petersen, IBM J.Res.Develop., Vol. 24, No. 5, September 1980. In this reference, a single-crystal silicon chip contains a mirror element attached to two single-crystal silicon torsion bars. This silicon chip is bonded to another substrate into which a shallow rectangular well has been etched. At the bottom of the well, two electrodes are alternately energized to deflect the mirror element in a torsional movement about the silicon torsion bars.
The silicon torsion bars, however, may be unnecessarily stiff thus requiring excessive torque to rotate the mirror. In addition, the location of the electrodes in the path of the rotating mirror may restrict the rotation of the mirror. Increasing the distance between the electrodes and the mirror may reduce the electrostatic force generated therebetween. Furthermore, the bonding of the silicon chip to the second substrate may add unnecessary complication to the fabrication of the device.
A two-dimensional optical scanner is discussed in the reference entitled “2-Dimensional Optical Scanner Applying a Torsional Resonator With 2 Degrees of Freedom” by Yoshinori Ohtuka et al., Proceedings, IEEE Micro Electro Mechanical Systems, 1995, pp. 418, 306-309. This reference discusses a torsional vibration system where two vibration forces are produced by one driving circuit. In particular, bimorph cells are used to excite the torsional vibration. One-dimensional scanning is enabled by driving the bimorph cells with the resonance frequency of either of the two torsional vibrations. Two-dimensional scanning can be achieved if the bimorph cells are operated by adding the resonance frequency signals of the two torsional vibrations. The scanner of this reference, however, may only be able to independently scan in any one dimension at predetermined resonance frequencies. In other words, because a single driving circuit is used to excite vibration about two axes, vibration about either axis may be limited to predetermined resonance frequencies. The scanner of this reference may also require the assembly of discrete components.
Notwithstanding the above mentioned references, there continues to exist a need in the art for improved microelectromechanical scanners and methods.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide improved electromechanical devices and methods.
It is another object of the present invention to provide an electromechanical rotating plate including improved actuators.
It is still another object of the present invention to provide an electromechanical rotating plate which can reduce the torque needed to effect rotation.
It is still another object of the present invention to provide an electromechanical rotating plate which can independently rotate around two different axes.
These and other objects are provided according to the present invention by electromechanical devices including a frame having an aperture therein and a plate suspended in the aperture. A pair of beams extend from opposite sides of the plate to the frame wherein a first end of each of the beams is fixedly connected to one of the plate and the frame and the second end of each of the beams is in rotational contact with the other of the plate and the frame so that the plate rotates relative to the second frame about an axis defined by the beams. Accordingly, the plate is free to rotate about the axis thus requiring relatively little torque to effect rotation.
Furthermore, the electromechanical devices can include an actuator having an electrode spaced apart from the frame and an arm extending from the electrode to a portion of the plate so that a potential difference between the electrode and the frame results in an electrostatic force which is transmitted by the arm to the plate thus effecting rotation of the plate. Because this actuator generates an electrostatic force in response to a potential difference between itself and the frame instead of the plate, the actuator does not inhibit motion of the plate. In addition, this actuator can provide a biasing support for the plate.
According to one aspect of the present invention, an electromechanical device includes a first frame having a first aperture therein, a second frame suspended in the first aperture wherein the second frame has a second aperture therein, and a plate suspended in the second aperture. A first pair of beams support the second frame along a first axis so that the second frame rotates about the first axis. A second pair of beams support the plate along a second axis so that the plate rotates about the second axis. The first axis and the second axis preferably intersect at a 90° angle providing independent rotation for the plate about both axes. A first actuator provides mechanical force for rotating the second frame relative to the first frame about the first axis. A second actuator provides mechanical force for rotating the plate relative to the second frame about the second axis. Accordingly, the plate can be independently rotated relative to the first and second axes.
The first and second frames can be formed from a microelectronic substrate to provide a microelectromechanical actuator. The plate can also be formed from this microelectronic substrate. Accordingly, the two axis actuator can be fabricated on a single substrate without the need for wafer bonding. More particularly, the first and second frames and the plate can be formed from a silicon substrate and the beams can be formed from polysilicon. The microelectromechanical actuator can thus be fabricated using thin film processing techniques known in the field of micromachining.
Each of the beams supporting the plate can extend from an opposite side of the plate to the second frame, and a first end of each of the beams can be fixedly connected to one of the plate or the second frame. The second end of each of the beams can be in rotational contact with the other of the plate or the second frame so that the plate rotates relative to the second frame about the axis defined by the beams. More particularly, these beams can be fixedly connected to the plate, and each beam may include an arched contact surface adjacent the second frame so that each of the beams rolls on the second frame as the plate rotates. The arched contact surfaces further reduce the torque required to rotate the plate.
A biasing support can support the plate relative to the second frame so that the plate and the second frame are coplanar when no mechanical force is provided by the second actuator and so that the plate rotates about the second axis when mechanical force is provided by the second actuator. This biasing support can be provided by the actuator. In particular, the second actuator can include an electrode spaced apart from the second frame and an arm extending from the electrode to a portion of the plate wherein a potential difference between the electrode and the second frame results in electrostatic force which is transmitted via the arm to the plate thus rotating the plate relative to the second frame. The

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for fabricating a microelectromechanical bearing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for fabricating a microelectromechanical bearing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating a microelectromechanical bearing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067900

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.