Method for evaluating oligonucleotide probe sequences

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S067000, 36, 36, 36

Reexamination Certificate

active

06251588

ABSTRACT:

This patent application includes a computer program listing appendix, which contains the source code for the software used in carrying out the examples in accordance with the present invention. The Appendix is contained on one compact disc submitted in duplicate designated as Copy 1 and Copy 2. The Appendix is in a single file that is 292 kB in size and named “computer program listing appendix U.S. Ser. No. 09-021,701”. The file was created on Feb. 2, 1998 and is a Microsoft Word document. The material in the Appendix is incorporated herein by reference.
A portion of the present disclosure contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the U.S. Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
BACKGROUND OF THE INVENTION
1. Field of the Invention
Significant morbidity and mortality are associated with infectious diseases and genetically inherited disorders. More rapid and accurate diagnostic methods are required for better monitoring and treatment of these conditions. Molecular methods using DNA probes, nucleic acid hybridization and in vitro amplification techniques are promising methods offering advantages to conventional methods used for patient diagnoses.
Nucleic acid hybridization has been employed for investigating the identity and establishing the presence of nucleic acids. Hybridization is based on complementary base pairing. When complementary single stranded nucleic acids, are incubated together, the complementary base sequences pair to form double-stranded hybrid molecules. The ability of single stranded deoxyribonucleic acid (ssDNA) or ribonucleic acid (RNA) to form a hydrogen bonded structure with a complementary nucleic acid sequence has been employed as an analytical tool in molecular biology research. The availability of radioactive nucleoside triphosphates of high specific activity and the development of methods for their incorporation into DNA and RNA has made it possible to identify, isolate, and characterize various nucleic acid sequences of biological interest. Nucleic acid hybridization has great potential in diagnosing disease states associated with unique nucleic acid sequences. These unique nucleic acid sequences may result from genetic or environmental change in DNA by insertions, deletions, point mutations, or by acquiring foreign DNA or RNA by means of infection by bacteria, molds, fungi, and viruses. The application of nucleic acid hybridization as a diagnostic tool in clinical medicine is limited due to the cost and effort associated with the development of sufficiently sensitive and specific methods for detecting potentially low concentrations of disease-related DNA or RNA present in the complex mixture of nucleic acid sequences found in patient samples.
One method for detecting specific nucleic acid sequences generally involves immobilization of the target nucleic acid on a solid support such as nitrocellulose paper, cellulose paper, diazotized paper, or a nylon membrane. After the target nucleic acid is fixed on the support, the support is contacted with a suitably labeled probe nucleic acid for about two to forty-eight hours. After the above time period, the solid support is washed several times at a controlled temperature to remove unhybridized probe. The support is then dried and the hybridized material is detected by autoradiography or by spectrometric methods. When very low concentrations must be detected, the above method is slow and labor intensive, and nonisotopic labels that are less readily detected than radio labels are frequently not suitable.
A method for the enzymatic amplification of specific segments of DNA known as the polymerase chain reaction (PCR) method has been described. This in vitro amplification procedure is based on repeated cycles of denaturation, oligonucleotide primer annealing, and primer extension by thermophilic polymerase, resulting in the exponential increase in copies of the region flanked by the primers. The PCR primers, which anneal to opposite strands of the DNA, are positioned so that the polymerase catalyzed extension product of one primer can serve as a template strand for the other, leading to the accumulation of a discrete fragment whose length is defined by the distance between the 5′ ends of the oligonucleotide primers.
Other methods for amplifying nucleic acids have also been developed. These methods include single primer amplification, ligase chain reaction (LCR), transcription-mediated amplification methods including 3SR and NASBA, and the Q-beta-replicase method. Regardless of the amplification used, the amplified product must be detected.
One method for detecting nucleic acids is to employ nucleic acid probes that have sequences complementary to sequences in the target nucleic acid. A nucleic acid probe may be, or may be capable of being, labeled with a reporter group or may be, or may be capable of becoming, bound to a support. Detection of signal depends upon the nature of the label or reporter group. Usually, the probe is comprised of natural nucleotides such as ribonucleotides and deoxyribonucleotides and their derivatives although unnatural nucleotide mimetics such as peptide nucleic acids and oligomeric nucleoside phosphonates are also used. Commonly, binding of the probes to the target is detected by means of a label incorporated into the probe. Alternatively, the probe may be unlabeled and the target nucleic acid labeled. Binding can be detected by separating the bound probe or target from the free probe or target and detecting the label. In one approach, a sandwich is formed comprised of one probe, which may be labeled, the target and a probe that is or can become bound to a surface. Alternatively, binding can be detected by a change in the signal-producing properties of the label upon binding, such as a change in the emission efficiency of a fluorescent or chemiluminescent label. This permits detection to be carried out without a separation step. Finally, binding can be detected by labeling the target, allowing the target to hybridize to a surface-bound probe, washing away the unbound target and detecting the labeled target that remains.
Direct detection of labeled target hybridized to surface-bound probes is particularly advantageous if the surface contains a mosaic of different probes that are individually localized to discrete, known areas of the surface. Such ordered arrays containing a large number of oligonucleotide probes have been developed as tools for high throughput analyses of genotype and gene expression. Oligonucleotides synthesized on a solid support recognize uniquely complementary nucleic acids by hybridization, and arrays can be designed to define specific target sequences, analyze gene expression patterns or identify specific allelic variations. One difficulty in the design of oligonucleotide arrays is that oligonucleotides targeted to different regions of the same gene can show large differences in hybridization efficiency, presumably due, at least in part, to the interplay between the secondary structures of the oligonucleotides and their targets and the stability of the final probe/target hybridization product. A method for predicting which oligonucleotides will show detectable hybridization would substantially decrease the number of iterations required for optimal array design and would be particularly useful when the total number of oligonucleotide probes on the array is limited. A method to predict oligonucleotide hybridization efficiency would also streamline the empirical approaches currently used to select potential antisense therapeutics, which are designed to modulate gene expression in vivo by hybridizing to specific messenger RNA (mRNA) molecules and inhibiting their translation into proteins.
While it is well known that the structure of the target nucleic acid affects the affinity of oligonucleotide hybridization, current methods for pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for evaluating oligonucleotide probe sequences does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for evaluating oligonucleotide probe sequences, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for evaluating oligonucleotide probe sequences will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2438510

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.