Electrical computers and digital processing systems: multicomput – Computer-to-computer data routing
Reexamination Certificate
2000-06-02
2004-04-27
Jaroenchonwanit, Bunjob (Department: 2143)
Electrical computers and digital processing systems: multicomput
Computer-to-computer data routing
C370S230000
Reexamination Certificate
active
06728777
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to multicast communications in generals; and in particular to a method for engineering paths over IP networks.
2. Related Art
“Network device” is a general term designating a computer linked via a network interface, or to other bridging devices that perform specialized functions in the network such as repeaters, bridges, switches, routers, to name only a few. A repeater is a device that moves the packets from one network segment to another by regenerating, re-timing, and amplifying the electrical signals. A bridge is a device that operates at the link layer and passes packets from one network to another and increases efficiency by filtering packets to reduce the amount of unnecessary packet propagation on each network. A switch is a network device similar in function to a multi-port bridge and includes a plurality of ports for coupling to similar ports in other networks and directing traffic between networks.
Switches and routers are used to cross-connect a group of trunks and for transmitting data packets from source to destination. Each switch/router maintains a table whose entries each include an address and trunk identification number. Each data packet includes a source address, a destination address, and a payload. Upon reception of a packet at a switch, the source address contained in the packet and the identification number of the trunk on which the packet arrived are stored as an entry in the table, unless the table already includes an entry comprising this address and the trunk identification.
A host node initiating a transmission to another node is called the source node. The host node which receives the packet is called the destination node. Thus, a host node may initiate transmission or receive data, whereas a router can only receive and retransmit data. Establishing communications between a single source node and a single destination node is achieved through a process called unicast routing.
Multicasting is defined as a communications process involving one or more senders and receivers, information transmitted by any participant in the multicast is received by every other participant in the multicast. Users connected to the network who are not participants in a particular multicast do not receive the information transmitted by any of the senders and no network components, e.g. switches/routers or trunks, are used unless needed for the multicast. For example, broadcast involving one sender and many receivers is a particular case of multicasting and may include wide-area broadcast, e.g. TV and radio, narrowcast for smaller areas, and conferencing with selected numbers of transmitters and receivers across a wide area.
As exemplary shown in
FIG. 1
, a plurality of nodes interconnected by trunks are arranged to form a spanning tree. Collectively, the sequences of nodes which interconnect all the member nodes of a particular group form a multicast tree. Conventionally, multicast tree construction is sender based forming the spanning tree around a core node. If host nodes A and D wish to set up a multicast transmission using a previously agreed multicast address “M”, a packet containing source address “A” and destination address “M” is transmitted in the network. Entries are added at each node where the packet arrives and then deleted after a defined time interval (maximum) if the entries are not reinforced from hosts A and D. When a host wants to join a multicast transmission, even if it is the first participant, it simply transmits a packet from itself to the “M” address. The packet is broadcasted over the entire spanning tree to all member nodes, and the host continues to send packets to the “M” address with a maximum inter-packet time interval smaller than Maxtime to make sure that at least one of the relevant table entries is not cleared. Other hosts wishing to join the multicast, simply transmit a packet to the “M” address whenever they decide to join.
For performing a multicast conversation in a network, the nodes elect a single node among all the nodes within each network to be the “root” node. Each node has a unique identifier (node ID) and the root may be the node having the lowest node ID. At each node, a “root port” which gives the fewest number of hops from this node to the root is selected, while ports not included within the spanning tree are blocked. At the root, all ports are placed in the forwarding state. For each LAN coupled to more than one node, a “designated” node, typically the one closest to the root, is elected to ensure connectivity to all LANs.
A standard spanning tree procedure has been defined for network bridging devices (bridges, routers, switches) to enable these devices to discover a subset of any topology that forms a loop-free (i.e. tree) and yet connects every pair of local area networks (LANs) within the network (i,e. spanning). The spanning tree procedure results in a network path between any two bridging devices which is updated dynamically in response to network modifications. For example, nodes exchange configuration messages called bridge protocol data units (BPDUs) frames, which allow them to calculate the active topology, or the spanning tree by blocking all redundant links and leaving a single communications path.
When a source node has a data packet to transmit to more than one destination node, such packet may be transmitted using a multicast routing. A delivery process called multicast routing is used to establish multicast communications. As the data packet propagates from router to router, or node to node, the data packet is selectively replicated at certain routers
odes so that sufficient copies of the data packet are generated and transmitted to each destination node of the multicast group. A path of the multicast tree between two nodes is referred to as a branch. There is only one branch on the multicast tree between any two nodes.
A new branch in a multicast tree is formed by transmitting a JOIN request control packet from the node joining the group to the tree. The multicast tree sends back a JOIN ACKNOWLEDGEMENT control packet in the opposite direction. It is possible to transmit only the JOIN control packet and each node not already in the multicast tree, or a non-member node, which transmits the JOIN request is directly attached to the tree. However, the JOIN acknowledgement provides the ability to prevent loops from occurring.
There is a need for selecting paths based on traffic engineering (TE) criteria for multicast traffic and to allow resources to be allocated independent of the multicast path setup process.
SUMMARY OF THE INVENTION
The present invention tries to overcome the disadvantages of the prior art associated with multicast traffic engineering (TE) for IP networks.
In an aspect of the present invention, there is provided a method for engineering paths for multicast traffic in IP networks. The method comprises the steps of defining a forwarding equivalence class (FEC); at an egress label switching router (LSP), detecting a control message matching a defined forwarding equivalence class; obtaining a constraint route in the direction of the root prefix of a multicast tree for the detected control message; for each detected control message, creating a state associated with the forwarding equivalence class and the constraint route; attaching traffic engineering (TE) parameters containing the forwarding state information to the detected control message; allocating resources; and forwarding the detected control message to a specified destination.
According to the invention, a label is associated with a unicast route/prefix and packets sent to that destination can be aggregated by associating them with the label. Since multicast routes are not aggregatable in general, associating a label with a multicast route implies per flow/group resources allocation. In essence, this kind of association results in RSVP, (or ATM) specific resources allocation and allows to satisfy per flow quality of service (QOS) requirements.
The constrai
Andersson Loa
Lee Cheng Yin
Jaroenchonwanit Bunjob
Nortel Networks Limited
LandOfFree
Method for engineering paths for multicast traffic does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for engineering paths for multicast traffic, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for engineering paths for multicast traffic will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3218966