Electrical computers and digital processing systems: multicomput – Computer-to-computer data routing – Least weight routing
Reexamination Certificate
1999-01-14
2001-08-28
Coulter, Kenneth R. (Department: 2154)
Electrical computers and digital processing systems: multicomput
Computer-to-computer data routing
Least weight routing
C709S224000
Reexamination Certificate
active
06282562
ABSTRACT:
FIELD OF THE INVENTION
This invention generally relates to a method which effects the way humans decide to interact with data communications in a network environment. More specifically, this invention relates to strategic modifications in traffic shaping, load balancing, or like apparatus, which are associated with the managing of aspects or characteristics of the transfer of data communications in a network environment.
BACKGROUND OF THE INVENTION
Strategic methodological considerations in the data communications network environment are most commonly directed to improving an aspect of the network's efficiency. The aspect may be one of communications speed—to which substantial efforts are directed in the simulations of modified interconnection topologies, and likewise of modified routing protocols. Alternately, the aspect may be one of communications security—to which substantial efforts are directed to encryption, filtering out of potentially armful active executable program fragments (e.g. viruses), and restriction of access (e.g. contents accessible by authorized personnel only, or access restricted absolutely—such as pornography on the Internet).
It is intrinsic for a proper understanding of data communications to consider how the aforesaid aspects have developed in such diverse technologies as telephony, distributed databases, cable television, Internet, and the like. However, for the purposes of brevity, the materials to be cited as characterizing the prior art will be primarily restricted to those related to the Internet. Those knowledgeable in the various data communications technologies are well aware of the overwhelming theoretical similarities between these diverse technologies (so called). However, even for those knowledgeable in the theoretical similarities, seemingly diverse nomenclatures have become a practical burden with the spawning of numerous industry standards and off-the-shelf embodiments.
It should be recalled that data communications in the network environment is propagated using packets of “information”, or some conceptual equivalent thereof. These packets undergo various transformations in the course of propagation, and also generally accumulate header information, which allows the packet's information to be reassembled (or reseparated) at the end of the propagation path. It is generally in the aggregation of a statistical profile of these headers that network communications engineers search for clues which suggest how an improved sub-optimizing of response time and other metrics may be achieved.
A general survey of relevant standards may be learned from www.cmpcmm.com/cc/standards.html while more specific standards relevant to the appreciation the limits of the relevant prior art may be learned from www.cisco.com/univercd/cc/td/doc/product/software/ios112 . . . /4cfrelay.html, from www.cern.ch/HSI/fcs/applic/rd11/Nov94/FCS note 1.html and from ftp.sunet.se/ftp/pub/Intemet-documents/rfc/rfc 1072.txt. In addition other relevant aspects of existing methods considered for use in this technological domain may be learned from www.vtt.fi/tte/staff/ojp/workflow.html, and from www.win.tue.nl/cs/pa/edis/sys/decision-wait/index.html.
It can be fairly stated that, with the major exception of security considerations, the motivation of data communications technology is principally directed to improving response time. However there are other relevant considerations in data communications technology, such as costs. Costs (in the present context) relate to amortization of equipment, maintenance of equipment, worker productivity, rate payment structures determining interconnection for the transfer of data communications, and the like.
Often, each of these costs is independently sub-optimized. Amortization and maintenance are considered as for any other equipment that becomes rapidly obsolescent. Productivity is thought to be a mix of security restrictions and the maximizing of response time. Rate payment structures are substantially directed to finding cheaper service providers or to using computational tricks (e.g. compression) in order to achieve higher utilization of the current service provider(s).
There are also relevant psychological factor involved when the one or more persons are parties to a data communications transaction. For example, most people become frustrated with slow response time (e.g. waiting for a dial tone, waiting for a database query response, etc.) while some people become almost addicted to fast response time (e.g. video-like arcade games).
SUMMARY OF THE INVENTION
In juxtaposition to the prior art, the method (and device) of the present invention are directed to changing the way humans interact with data communications technologies; and circumstantially to effecting modifications in those automated portions of data communications systems which are sensitive to response time metrics. This changing is accomplished through the introduction of selective increasing of delay in response time. This intentional application of response time degradation serves to pedagogically discourage human users of data communications systems from economically disadvantageous interactions.
For example, consider a work environment where employees are allowed to surf the Internet and where simultaneously customer ordering and service are provided via the same connections to the Internet. If the economic benefits (accruing from this work environment by ordering and service) are deemed to be more important than the surfing activity (and the surfing activity is nevertheless deemed to be a permissible or even a necessary activity), then the present invention introduces a degradation in response time to the surfer during those times when customer ordering and services are actually or potentially requiring access to the Internet connections.
Another example relates to educating a class of employees away from regular use of recreational data communications activity (e.g. Internet surfing or private phone calls) by imposing a stochastic increase in response time for these activities. For example, consider the internal telephone system of a large private concern (e.g. a geographically distributed corporation whose offices are interconnected through the corporation's PBX or through Wide Area Network packet telephone transfer interconnection facilities).
At times when the packet transmission rate between offices is actually or potentially approaching peak load capacity, the PBX has three known basic options. Firstly, the PBX may fail to deliver a dial tone to new requests for line services until the load has diminished. Secondly, the PBX may apply to an external service provider for temporary expensive supplemental interconnections. Thirdly, the PBX may degrade all services provided (using packet delay and packet loss) in order to provide an equitable level of services to all applicants for line services.
According to the present invention (for this PBX-type example), a telephone service priority metric is established for each user. For example, the metric may weigh two factors: the degree to which use of the inter-office telephone is part of the users job function; and the rank of the user as an employee. Together the weighing of these two factors will produce a metric such that the central operator has priority over the president of the company, who in turn has priority over the company's security personnel, who in turn has priority over the company's vice presidents, etc.
Using this example metric, when the packet transmission rate between offices is actually or potentially approaching peak load capacity, the PBX assigns a packet delay time in proportion to the designated metric (as can be measured from the header content of each packet). This causes workers who do not have internal telephone related job functions and who do not have high employee rank to decide to tell the party with whom they a speaking “. . . seems to be a problem with the phones today . . . I'll talk to you tomorrow”. Eventually these types of employees learn or otherwise
Bielous Yaron
Pongranz Shlomi
Raab Ilan
Sidi Eli
Somech Ovad
Browdy and Neimark
Coulter Kenneth R.
Net Reality
LandOfFree
Method for economically sub-optimizing interactions in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for economically sub-optimizing interactions in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for economically sub-optimizing interactions in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2545652