Multiplex communications – Communication over free space – Having a plurality of contiguous regions served by...
Reexamination Certificate
2000-07-25
2004-12-28
Nguyen, Chau (Department: 2663)
Multiplex communications
Communication over free space
Having a plurality of contiguous regions served by...
C370S347000
Reexamination Certificate
active
06836473
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of downlink timeslot power control in TDMA (Time Division Multiple Access) based wireless communication networks having mobile stations.
2. Description of Related Art
In a telecommunications system, e.g., a cellular radio system, any one of several access strategies may be employed, for example, FDMA (Frequency Division Multiple Access), CDMA (Code Division Multiple Access), or TDMA.
In North America, a digital cellular radiotelephone system using TDMA is called D-AMPS (Digital Advanced Mobile Phone System), some of the characteristics of which are specified in the TIA/EIA-136 standard published by the Telecommunications Industry Association and Electronic Industries Association (TIA/EIA). Another digital communication system, using direct sequence CDMA, is specified by the TIA/EIA/IS-95 standard. There are also frequency hopping TDMA and CDMA communication systems, one of which is specified by the EIA SP 3389 standard (PCS 1900). The PCS 1900 standard is an implementation of the GSM system, which is common outside North America, that has been introduced for PCS (Personal Communication Services) systems.
In an FDMA based system, the frequency spectrum is divided into a number of disjunctive frequency bands, where each band serves as a separate radio channel. In a system that employs CDMA, spreading codes are used to distinguish the various radio channels.
In a TDMA based system, however, the time domain is divided into time frames. Each time frame is then further divided into a number of timeslots, for example, three timeslots. Thus, each carrier frequency-timeslot combination constitutes a different physical channel over which a communications signal burst can be transmitted. In a cellular radio telecommunications system, a communications signal burst transmitted from a mobile station to a corresponding radio base station is referred to as an uplink burst. In contrast, a communications signal burst transmitted from the radio base station to the mobile station is referred to as a downlink burst.
FIG. 1
illustrates a conventional TDMA cellular radio system including cells C
1
-C
10
and base stations B
1
-B
10
, one base station per cell. The base stations are typically situated in the vicinity of the cell center and have omnidirectional antennas. The base stations of adjacent cells may, however, be co-located in the vicinity of cell borders and have directional antennas, as is well known to those skilled in the art. Each base station typically supports multiple carrier frequencies, and adjacent base stations have different sets of carrier frequencies to prevent or reduce interference.
The system also includes mobile stations M
1
-M
10
that are movable within a cell and from one cell to another. An MSC (Mobile Switching Center) is connected to the base stations by, for example, cables or fixed radio links. The MSC is also connected to a fixed public switching telephone network or a similar fixed network with ISDN facilities. In addition to the MSC illustrated in
FIG. 1
, there may also be other mobile switching centers.
Power control, or in other words the ability to modify or adjust the power levels associated with communications signal bursts, particularly, downlink communications signal bursts transmitted from a base station to a mobile station, is important in a telecommunications system to ensure that the signal quality associated with a given channel is adequate. Power control also helps improve the spectral efficiency of the system as a whole by a) balancing average, system-wide signal quality and system capacity, and b) effectively limiting the emitted energy that acts as interference at radio connections with other mobile stations, or in other words, reducing interference from co-channels.
Downlink power control relies on received signal quality and received signal strength as reported from the mobile station in order to regulate the base station output power so that minimum requirements for speech quality are fulfilled but energy emitted is minimized to keep interference low. For this purpose, algorithms are implemented in the base stations which use measurement results transmitted from the mobile station. The parameter can include, for example, the measured quality and the measured RSSI (Received Signal Strength Information) of the downlink data, and radio network management parameters transmitted from the MSC, such as acceptable speech quality. A more detailed description of downlink power control is provided in U.S. patent application Ser. No. 09/399,764, filed Sep. 21, 1999, now U.S. Pat. No. 6,529,494 which is incorporated herein by reference.
In accordance with the TDMA standard, IS-136 Rev. A, with which a large number of mobile stations comply, downlink transmission power level remains constant throughout each time frame. Thus, a mobile station receiving a downlink burst during a given timeslot expects the power level of the received burst to remain constant, or nearly constant, over the timeslot, notwithstanding attenuations due to fading. However, it is highly probable that the TDMA standard (or other future standards) will soon incorporate downlink power control, where the transmission power level from timeslot to timeslot may be adjusted, to achieve better signal quality and spectral efficiency. This adjustment technique is often referred to as Time Slot Power Control (TSPC).
If the TDMA standard incorporates downlink power control, as introduced in the ANSI 136 rev. A specification, mobile stations which are designed in accordance with the present TDMA standards (i.e., legacy mobile stations), particularly those mobile stations that are not designed to measure RSSI (Received Signal Strength Information) during the timeslot in which they are receiving downlink data, may be unable to accurately measure and report RSSI.
It has been shown that mobile phones made with the earlier IS-136 and IS-54B specifications can also handle TSPC (TimeSlot Power Control), i.e., downlink power control in each timeslot, given that certain limitations on signal strength variation between timeslots are observed. Note that IS-136.2, rev. A specifies (see, e.g., chapter 2.4.5.4.1.2.1) how the RSSI reported by the mobile station to the base station in the Channel Quality Message, is obtained. In accordance with IS-136.2, Rev A, RSSI values for 25 frames received during one second, are summed and then divided by 25 to obtain an average RSSI that is reported by the mobile station to the base station. However, the standard does not specify which part or parts of a received burst or frame shall be measured to obtain the RSSI value for that frame. As indicated above, mobile phones from different manufacturers often use different methods, for example by measuring at different times in a frame, to determine downlink channel signal strength. Thus, when TSPC is used to control downlink power in each timeslot so that downlink channel signal transmission power levels vary during a frame, mobile stations from different manufacturers will report different, and likely inaccurate, RSSIs for the same timeslots.
In summary, although TSPC can provide many advantages, not all mobile stations will be equipped to support TSPC. The PV (Protocol Version) of a mobile station indicates the air interface protocol standard (such as TIA/EIA 136 Rev. A) that the mobile station is capable of supporting. Since neither the current nor the previous versions of the air interface protocol standard support downlink power regulation on a per timeslot basis, mobile stations with older PVs may not be able to handle TSPC. The TSPC feature handles this by discerning whether any mobile stations using a particular carrier or communication channel are incapable of supporting TSPC. This can be done, for example, using PV information provided by the mobile stations.
If any one of several mobile stations using a carrier cannot support TSPC, then TSPC is turned off for that carrier and only BSPC (Base Station Power Con
Hyun Soon-Dong
Nguyen Chau
Telefonaktiebolaget LM Ericsson (publ)
LandOfFree
Method for downlink attenuation based on mobile protocol... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for downlink attenuation based on mobile protocol..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for downlink attenuation based on mobile protocol... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3279322