Multiplex communications – Communication techniques for information carried in plural... – Combining or distributing information via time channels
Reexamination Certificate
2000-04-21
2003-10-21
Kizou, Hassan (Department: 2662)
Multiplex communications
Communication techniques for information carried in plural...
Combining or distributing information via time channels
C370S487000, C370S493000, C725S036000, C725S040000, C725S142000, C348S014070, C348S423100
Reexamination Certificate
active
06636533
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to multimedia broadcast systems and, in particular, to a method for distributing end-user selectable additional content in a multimedia broadcast stream.
2. Description of Prior Art
The advent of digital television has enabled advances in the area of user selectable content used in conjunction with the traditional broadcast distribution architecture. Besides increasing the number of channels available, content providers are able to provide a range of services far exceeding those available in analog-based distribution systems.
The Vertical blanking interval utilized to transmit data along with the video signal is described in a number of patents, including a U.S. Pat. No. 4,536,268. However, this technique does not allow user interaction.
Other patents, including U.S. Pat. No. 5,512,935, describe the distribution of digital video requiring additional equipment such as a set too box (STB) at the receiver location. Downstream content which is broadcast from a server utilizes the traditional broadcast medium, while upstream content, such as user choices, use the public telephone system co-ordinated via the STB.
U.S. Pat. No. 5,260,778 describes embedding additional controls into digital video streams, and requires an addressable controller to transmit this stream to a receiver.
MPEG-2 Systems Specification, ISO/IEC 13818-1, specifies the MPEG-2 standard for how programs consisting of audio and video elementary streams can be multiplexed together in a “transport stream.” The MPEG-2 Systems Specification accommodates the inclusion of “private data” streams into a program's transport stream. “Program-Specific Information” carries the information regarding which elementary streams have been multiplexed in the transport stream, what type of content they carry and how they may be demultiplexed.
The standard encoding and compression of a video stream into MPEG format is well known to those skilled in the art. For completeness purposes the general procedure is summarized here.
Though several variations to the MPEG encoding procedure exist, they are all based on JPEG, a compression standard for single image compression. In JPEG, image Q is transformed into the frequency domain using a Fast Fourier Transform (FFT) resulting in FFT(Q). Since the image is discretized in the frequency domain, losses should be expected when applying the inverse Fourier Transform to obtain the original image.
Before compression, the various frequencies are bit encoded using fewer number of bits for high frequencies and greater number of bits for low frequencies. The reasoning for this is that high frequencies representing changes in the image in the detail are filtered out or can be compensated by the human eye. Hence, less information has to be dedicated to the higher frequency range. In contrast, low frequencies describe the overall image and are not filtered by the eye. The resulting encoded bitstream of FFT(Q) is a representation of the image Q with a potential small error due to the discretization. The image Q can be reconstructed by decoding the bitstream and applying the inverse Fourier Transform to FFT(Q). The encoded bitstream is then compressed using an LZ-Type compression. The compressed image of the original image Q may be denoted by JPEG(Q).
In MPEG this principle is taken further. For a given image stream IS(i), each individual image (I) I(i,j) is compared with its previous individual image I(i,j−1) and the difference image (D) D(i,j) is computed. A difference image can be characterized using:
(i) a shift (u,v) in the image in the (x,y) direction, thus capturing a movement in the image; and
(ii) the set of pixels that have changed.
The computational complexity of the MPEG encoding procedure lies in the fact that various combinations of (u,v) have to be tried to obtain a small image D(i,j).
The D(i,j) is then compressed using a bit encoding similar to the one discussed in the JPEG compression. On the average, D(i,j) represents a small image change, the resulting compressed difference image (DC) DC(i,j) is expected to be rather small because most of the image should be the same as the previous and hence will not show up in the FFT.
Due to the fact that a sequence of DC(i,j), where (j=1, . . . , p)
100
, shown in
FIG. 1
, is computed of each other and each DC(i,j)
100
compression can have a marginal error due to the FFT, every so often a whole compressed image I(i,j) has to be transferred to limit error compounding. Such compressed images are called anchor frames, they are created by JPEG compression, i.e., JPEG(I(i,j)), and represented as JC(i,j)
120
. By default, the first image I(i,
1
) must be transferred as an anchor frame JC(i,
1
). The resulting compressed stream S(i) consists of a sequence of stream parts, each stream part defined to begin with an anchor frame JC(i,j)
120
and subsequent compressed difference images DC(i,j+1) to DC(i,j+p)
140
.
Having thus described the general MPEG encoding mechanism, it is shown that the way the main image stream. IS(
1
) and each additional image stream IS(i) are encoded, is as independent MPEG streams S(i)
130
. However, this approach may require additional bandwidth because the entire image part JC(i,j)
120
to DC(i,j+p)
140
has to be transmitted because the difference images are computed of JC(i,j)
120
and its subsequent images.
In providing for some level of customization, additional items beyond a broadcast architecture need to be supplied:
1) a means of communicating user's preferences from the receiver back to the source of the broadcast program, and
2) a separate channel for transmission of the modified content back to the originator of the preference.
These additions add expense and complexity to the broadcast system, i.e., each user must be assigned a separate channel.
What is needed is a method for substantially reducing or eliminating above limitations, all the while retaining the cost and simplicity of a multimedia broadcast architecture would be useful.
SUMMARY OF THE INVENTION
The invention is a system architecture which, in addition to the base stream, enables the broadcast delivery of alternative media segments to a receiver, without a separate broadcast channel for these alternative segments and without a need for an upstream channel for that receiver to indicate which alternative media segment to view.
In one embodiment of the invention the content owners may choose to offer an option of a PG-rated version of a R-rated movie. Most of the movie may be rated PG, however a few segments may give it the R rating. The PG-rated version would be identical to the original except for the substitution of a few brief segments. The base stream would be the R-rated version of the movie, and the alternative segments would be those PG-rated segments which would substitute for the R-rated segments. The invention allowing the user to choose which version to view by broadcasting a combination of the R and PG rated versions without the use of additional upstream or downstream channels.
The base media stream may be compressed using any number of methods. During pauses in the instantaneous bandwidth requirements of the base stream, the compressed alternative media segments are multiplexed with the base media stream to create a combined stream. Typically, the combined stream's instantaneous bandwidth requirement will exceed the channel's capacity to deliver this stream. In those cases the compression of the alternative segments is modified by expanding the delivery time for the alternative segment, hence reducing the combined stream's instantaneous bandwidth requirements. The alternative segments are expanded by an amount great enough so that the combined stream's bandwidth requirements can be satisfied by the channel. Because the alternative segment is expanded in time, the delivery of the alternative segment must be initiated far enough in advance of its use so that it will be present at the rece
Baransky Yurij
Franke Hubertus
Pattnaik Pratap
Cameron Esq. Douglas W.
Elallam Ahmed
Kizou Hassan
Scully Scott Murphy & Presser
LandOfFree
Method for distributing digital TV signal and selection of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for distributing digital TV signal and selection of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for distributing digital TV signal and selection of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3175328