Method for developing an anatomic space

Surgery – Instruments – Blunt dissectors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S192000, C600S207000, C600S204000

Reexamination Certificate

active

06277136

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to medical devices, and particularly to expandable medical devices such as cannulas, catheters, retractors, and similar devices.
Existing cannulas and/or retractors as used in endoscopic surgery today are passive devices which are fixed in length and width. They cannot be varied intraoperatively in length and width to accommodate larger devices or varying size devices through the skin.
Skin and subcutaneous (subsurface) tissues are viscoelastic: they will gradually stretch without tearing. Once the tissue is slowly stretched it maintains its expanded condition for a period of time. Alternatively, the tissue can be stretched further, for example to progressively stretch out an incision. Then, after relaxation, the tissue will regain its original unstretched condition without having been damaged.
Current methods used for retracting tissue and improving visualization are mechanical separation using metal refractors during open surgery, or the direct pressure of an unconfined flow of fluid such as water or CO
2
during fiberoptic surgery. A typical mechanical external fixator has pins driven through the bones and mechanically distracts the elements of the joint. Problems with the water method include fluid extravasation including into and through the tissue itself. Increased pressure and swelling result in the area, resulting in edematous or swollen tissue. Excess pressure from mechanical refractors may cause necrosis or tissue death. With these methods, it is impossible to monitor the pressure being applied to the body tissues, and tissue damage or necrosis can result.
While operating from within the body, i.e., fiber optic assisted surgery as opposed to open surgery, there is no known way to selectively move or retract tissue, either hard tissue such as bone or soft tissue, out of the way to improve visualization. No device in use adequately allows a surgeon to create an actual space or expand a potential space in the body, by separating adjacent layers of tissue. The prior art does not disclose a retractor which is powerful enough and made of a material which is strong and resilient enough to, for example, separate tissue planes from within. Such a device, especially in the field of fiber optic surgery, would allow a surgeon to visualize and operate without using the conventional bulky and awkward mechanical Detractors which require large open incisions. Such a device would also permit working within the body without damaging a great deal of tissue in the path between the skin opening and the working area, by minimizing the external orifice or skin incision.
SUMMARY OF THE INVENTION
The present invention is a system of refractors and/or cannulas with which a surgeon can use to take potential spaces within the body and turn them into existing spaces safely and easily and controllably in order to safely visualize appropriate tissue and operate. The cannula and/or retractor selectively moves appropriate tissue out of the way to enable a surgeon to see and work better within the body, and selectively moves body parts such as joint parts or soft tissue planes in order to create a space between the tissues for visualization and for working.
A cannula and/or retractor of the present invention may have a fluid-operated portion such as a balloon or bladder to retract tissue, not merely to work in or dilate an existing opening as for example an angioscope does. The fluid-filled portion is flexible, and thus there are no sharp edges which might injure tissue being moved by the retractor. The soft material of the fluid-filled portion, to an extent desired, conforms to the tissue confines, and the exact pressure can be monitored so as not to damage tissue. The expanding portion is less bulky and more compact, and the pressure it applies at the tissue edges can stop bleeding of cut tissue. These are all features not possessed by a conventional mechanical retractor.
With a typical mechanical retractor, the opening in the skin and thence inwardly must be larger than the surgical area being worked upon, in order to be able to get the mechanical retractor into position. The surgeon must damage a large amount of tissue which may be healthy, in order to expose the tissue to be worked on. The cannula and/or retractor of the present invention minimizes damage to tissue in the way of the tissue the surgeon needs to expose, which was previously cut in a large open exposure. With the cannula and/or retractor of the present invention, the opening at the skin is smaller at the skin where the device is inserted, and wider at the location inside the body where the cannula and/or retractor is expanded. The cannula and/or retractor is first placed into the body in an unexpanded condition, and then, as it is expanded, pushes tissue out of the way in deeper layers of the body one can see and safely operate on affected tissue. Thus, less undesired tissue damage occurs.
The bladder is pressurized with air or with water or another fluid. The fluid used in the bladder must be safe if it accidentally escapes into the body. Thus, besides air, such other fluids as dextrose water, normal saline, CO
2
and N
2
are safe. The pressure in the bladder is monitored and regulated to keep the force exerted by the retractor at a safe level for tissue to prevent tissue necrosis. The retractor can exert a pressure on the tissues of as high as the mean diastolic pressure of 100 mm of mercury, or higher for shorter periods of time, while still being safely controlled. Typical inflatable devices such as angioscopes do not have anywhere near the strength, or the ability to hold enough fluid pressure, or shapes to retract tissue as described herein. As compared to prior art devices, the retractor of the present invention operates with greater pressure within the bladder, since it is made of stronger materials such as Kevlar or Mylar which may be reinforced with stainless steel, nylon, or other fiber to prevent puncturing and to provide structural shape and support as desired. Such materials are strong enough to hold the necessary fluid pressure of about several pounds or up to about 500 mg Hg or more and exert the needed force on the tissue to be moved. The choice of material is well within the ability of one familiar with such materials and accordingly will not be gone into in further detail herein. The present retractor is thus able to exert substantially more force on adjoining tissues than a prior art device. The shapes of the refractors are specific for each application, and may include separate variable chambers which are sequentially controllable, to control the direction of tissue retraction.
Surgeons operate along tissue planes. Once a surgeon finds a tissue plane, he dissects along it, starting the separation process with the knife. The cannula and/or retractor holds the tissue layers apart and helps and eases in defining and further separating the tissue layers as the surgeon operates along the tissue planes, helping to spread and define the planes. The cannula and/or retractor helps to separate the tissue layers, increasing the space for operating, and improving the surgeon's ability to separate and visualize, leading to better and safer surgical technique.
A preferred use for the present retractor is in the field of fiber optic surgery, including endoscopy, arthroscopy, laparoscopy, etc. which require looking into and operating within a limited space with a fiber optic light and camera. The bladder expands into an area of soft tissue—for example the bursa—and pushes it out of the way. The bladder can be left in place during the operation, or it can be deflated and removed, and the arthroscope and other instruments can be put into the space created. to The bladder may be a bellows type device in which the material does not stretch but which expands when pressurized from within and which is collapsed by the use of suction. In this case, it would preferably be made of a polymer of the class including Kevlar or Mylar fabric for strength and structural integrity

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for developing an anatomic space does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for developing an anatomic space, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for developing an anatomic space will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2476281

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.