Method for determining vision defects and for collecting...

Optics: eye examining – vision testing and correcting – Eye examining or testing instrument – Objective type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06722767

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates in one aspect to a method for determining vision defects and for collecting data for correcting vision defects of the eye by interaction of a patient with an examiner and apparatus therefor.
2. Background Information
The primary or traditional method for correcting vision defects, such as, correcting myopia, hyperopia, and astigmatism, comprises selection of and mounting of particular lenses in a spectacle-frame by the physician for a vision test, and the patient establishes his optimal faculty of vision based on the gradation of the test lines of a test image. In accordance with this traditional methods the patient can obtain optimally suited glasses for correction of significant, or approximate or gross, vision defects, but the method substantially may provide only for approximate or rough correction of vision defects.
This classical approach or method has now been replaced by objective metrological methods which are performed without active participation by the patient. Examples include automatic refractometers.
Next to the objective determination of significant vision defects, various topographical apparatus and devices for measuring eye aberrations, such as, aberroscopes or aberrometers, are utilized so as to determine patient-specific cornea topographies and, as well, substantially all wavefront aberrations. On the basis of such metrological data, the patients are treated, for example, by using an excimer laser system, to have specific topographies applied or formed on the cornea of the eye, which topographies are to ensure an optimal faculty of vision (compare: P. Mierdel, H.-E. Krinke, W. Wiegahnd, M. Kaemmerer, T. Seiler, “Me &bgr;platz zur Bestimmung der monochromatischen Aberration des menschlichen Auges {Test station for the determination of the monochromatic aberration of the human eye}”, OPHTHALMOLOGE, 1997, 94; pages 441-445, SPRINGER VERLAG, 1997).
In these determinations, or measurements or metrological approaches, a double-pass through the optics system of the eye needs to be realized due to technical reasons. The main problem with this method resides therein that the uneven or odd-valent aberrations are determined in a falsified manner. A reduction of the problem with the double-pass method can be obtained, for example, by use of different numerical apertures for the entering and exiting light. Another approach comprises inducing of a fluorescence on the cornea so as to preclude these metrological errors (compare: LASER FOCUS WORLD, April 1999, pages 35-36).
In the methods available in the state of the art, an optical apparatus or system, the eye, which is a rather dynamic system, is precisely measured and corrected, but only in a momentary or snapshot-like manner. This suggests errors, particularly in the desired correction of higher-order aberrations which preclude attainment of an optimal faculty of vision. This is indicated thereby that with the measurements of eye aberrations of eyes actually having the best faculty of vision, occasionally high aberrations are shown, and till this day it is not known with certainty whether a physical correction of the eye actually increases or even worsens the faculty of vision of the eye.
It is further known that aberrations of the human eye can be compensated with the aid of adaptive optics, so as to realize high-resolution images of the cornea for medical investigations (compare: LASER FOCUS WORLD, August 1998, pages 18-22).
A microscope with an adaptive optics is described in German patent publication No. 19 733 193 A1. This publication mentions various wave modulators.
In the paper “Supernormal vision and high-resolution retinal imaging through adaptive optics,” by Liang et al., J. Opt. Soc. Am. A, Vol 14 (1997), pages 2884-2892, apparatus and method are described with which by way of a wavefront measurement, using a deformable mirror, the feasibility of an adaptive correction of eye aberrations as well as photographic images of the retina is achieved.
U.S. Pat. No. 5,777,719 issued to inventors Williams et al. on Jul. 7, 1998 and entitled “Method and apparatus for improving vision and the resolution of retinal images,” also describes a method and a device for obtaining improved photographic pictures of the retina, with the apparatus, using a deformable mirror, being capable of obtaining corrected pictures of the retina using a CCD-camera.
OBJECT OF THE INVENTION
It is an object of the invention to provide a method for determining vision defects and for collecting data for correcting vision defects of the eye by interaction of a patient with an examiner and apparatus therefor.
It is also an object of the invention in one aspect to make available a method, and apparatus, which serve in the acquisition of correction data for the correction of eye aberrations, with the translation of such data leading to an improved faculty of vision of the patient.
SUMMARY OF THE INVENTION
One feature of the invention to accomplish the foregoing objects resides in a method for determining vision defects and for collecting data for correcting vision defects of the eye by interaction of a patient with an examiner, said method comprising: projecting an image into the eye of the patient with an adaptive optical system; said adaptive optical system comprising at least one adaptive optical element; said at least one adaptive optical element being configured to have its optical characteristics changed by an electrical signal, in an attempt to minimize distortions of the image as perceived in the eye and the brain of the patient; determining the presence of distortions of the image as perceived in the eye and the brain of the patient by interaction of the patient with the examiner; providing an electronic control system; said electronic control system being configured to control the optical characteristics of said at least one adaptive optical element through outputting of an electrical signal; modifying the optical characteristics of said at least one adaptive optical element through outputting of an electrical signal of said electronic control system and obtaining a modified image of the image in the eye of the patient, in an attempt to correct for the distortions of the image as perceived in the eye and the brain of the patient; evaluating said modified image by interaction of the patient with the examiner; repeating said modifying step and said evaluating step and obtaining a modified image having minimized distortions as perceived in the eye and the brain of the patient; determining the optical characteristics of said at least one adaptive optical element, as modified, resulting from said modified image having minimized distortions as perceived in the eye and the brain of the patient; and computing vision correcting data for the eye being examined, from said optical characteristics of said at least one adaptive optical element, as modified, resulting from said modified image having minimized distortions as perceived in the eye and the brain of the patient.
Another feature of the invention to accomplish the foregoing objects resides in a method for determining vision defects and for collecting data for correcting vision defects of the eye by interaction with a patient, said method comprising: forming an image in the eye of the patient with an optical system; said optical system being configured to have its optical characteristics changed by at least one signal, in an attempt to minimize distortions of the image as perceived in the eye and the brain of the patient; determining the presence of distortions of the image as perceived in the eye and the brain of the patient by interaction with the patient; providing an electronic control system being configured to control the optical characteristics of said optical system through outputting of at least one signal; modifying, at least once, the optical characteristics of said optical system through outputting of at least one signal of said electronic control system and obtaining a modified image of the image

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for determining vision defects and for collecting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for determining vision defects and for collecting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for determining vision defects and for collecting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3206677

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.