Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Capsules
Reexamination Certificate
2001-01-26
2004-01-13
Fredman, Jeffrey (Department: 1637)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Capsules
C424S491000, C264S004320, C264S004330, C702S027000
Reexamination Certificate
active
06676964
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to methods of microencapsulating bioactive substances, and particularly to methods utilizing interfacial coacervation at the immiscible interface of two liquid phases. More particularly, the invention pertains to such methods which maintain conditions of low shear force during formation of the microcapsules. The present invention also pertains to microcapsules formed by such methods and to their methods of use.
2. Description of the Prior Art
Liquid microcapsules and liposomes are often used to store and deliver bioactive substances such as drugs, enzymes or biocatalysts. One recent effort to provide liposomes with enhanced circulation times is that disclosed in U.S. Pat. No. 5,013,556 to Woodle et al. Liposomes created by Woodle et al. contain 1-20 mole % of an amphipathic lipid derivatized with a polyalkylether (such as phosphatidyl ethanolamine derivitized with polyethyleneglycol). Another improvement is provided by U.S. Pat. No. 5,225,212 (issued to Martin et al.) which discloses a liposome composition for extended release of a therapeutic compound into the bloodstream. Those liposomes are composed of vesicle-forming lipids derivatized with a hydrophilic polymer, wherein the liposome composition is used for extending the period of release of a therapeutic compound such as a polypeptide, injected within the body. Formulations of “stealth” liposomes have also been created with lipids that are less detectable by immune cells in an attempt to avoid phagocytosis (Allen et al. (1992)
Cancer Res
. 52:2431-39.) Still other modifications of lipids (i.e., neutral glycolipids) may be made in order to produce anti-viral formulations. U.S. Pat. No. 5,192,551 to Willoughby et al. 1993. However, new types of liposomes and microcapsules are needed to exploit the various unique applications of this type of drug delivery.
Many proteins of interest, such as those containing bioactive drug sites or enzymatically active sites, are only slightly soluble in aqueous solutions, which limits the quantity of drug that can be microencapsulated by usual techniques. In an effort to increase the amount of drug delivered to the target tissues, crystalline drug suspensions are sometimes encapsulated. Fragile liposome or non-lipid carriers too often rupture or are pierced by the sharp crystals, however, leading to loss of the drug before it reaches its target. This undesired release of the drug crystals has also been known to damage the lining of blood vessels.
Others have endeavored to increase the amount of drug in a liposome by loading the drug into the liposome by via a pH gradient. U.S. Pat. No. 5,192,549 (issued to Barenolz and Haran) describes methods for forming liposomes and then obtaining transmembrane loading of amphiphatic drugs into the liposomes using an ammonium ion gradient between the internal and external aqueous phase on either side of the liposome membrane. The movement of ammonium from inside the liposome to the outside causes a pH change inside, thereby creating a driving force for the amphiphatic drug to be loaded or released through the membrane. Disadvantages of this method are that it requires the encapsulation of ammonium sulfate or another ammonium salt inside the liposomes, and transmembrane transport is limited to weak amphiphatic compounds. This type of drug concentrating method has not been used successfully to form encapsulated crystals, however. If this method were applied to protein crystal growth inside the liposome, it would be limited to applications where the protein was compatible with the ammonium salts and dissolved NH
4
.
Another area where protein crystals are used is in macromolecular crystallography, which requires large, high-quality protein crystals. Conventional methods of growing protein crystals, as required for x-ray diffraction studies of three-dimensional structure, are often compromised by the formation of multiple small crystals, amorphous precipitates and aggregates rather than a single, or a few, large crystals from the limited amount of protein in the available mother liquor. It has been estimated that about 10
15
molecules are required to make up a crystal of sufficient size for x-ray crystallographic examination (Proteins Structures and Molecular Properties, 2nd Ed., Thomas E. Creighton, Ed., W. H. Freeman and Co., NY, N.Y., p. 203). It is often observed that, with conventional techniques, the best crystals begin to redissolve because of fluid perturbations at the crystal surface, temperature shifts and other changes in the mother liquor surrounding the crystal. Carrier fluids used to wash the crystal free from the mother liquor or used during mounting of the crystal (for x-ray diffraction) also tend to cause redissolution of the crystal before it can be analysed.
There are many existing methods aimed at enhancing protein crystal growth, some of which take advantage of the favorable crystal growing conditions found in microgravity. An apparatus for carrying out crystallization of proteins and chemical syntheses by liquid-liquid diffusion in microgravity is described in U.S. Pat. No. 4,909,933 (issued to Carter et al.) Another apparatus, disclosed in U.S. Pat. No. 5,130,105 (issued to Carter et al.) relies on vapor diffusion growth of protein crystals. Other recent microgravity-dependent methods are disclosed in U.S. Pat. No. 5,106,592 (issued to Stapelmann et al.), which deal with hanging drop vapor diffusion, dialysis of the protein solution, and interface diffusion between the protein solution and a precipitating agent.
A ground-based (i.e., Earth normal gravity) method of concentrating protein solutions to obtain crystal growth is described by Todd et al. ((1990)
J. Crystal Growth
110: 283-292), and U.S. Pat. No. 5,104,478 (issued to S. K. Sikdar et al.), which relies on osmotic dewatering of protein solutions. Todd et al. and Sikdar et al. describe the use of a dual chamber device wherein a near-saturated protein solution is separated from a highly osmotic solution by a reverse osmosis membrane which allows dewatering, resulting in supersaturated conditions which in turn cause nucleation and protein crystal growth in the mother liquor. The main advantage of this method is that the rate of dewatering can be determined by the difference in osmotic pressure on either side of the membrane. One drawback of this method is that the nucleation and subsequent protein crystal growth depends on increasing the concentration of precipitant and protein in the mother liquor. There is no control over the effects of solute driven convection on the surface of the crystal. As is the case with the protein crystals grown under conditions of microgravity, the crystals are not protected by any enclosure thus they are subject to physical damage as they are harvested and mounted. None of the existing methods for growing large, perfect crystals provide adequately protected protein crystals.
In conventional x-ray diffraction studies to elucidate the three-dimensional structure of a protein, in order to avoid physical damage to protein crystals, the crystals have typically been mounted in aqueous gels. There are problems, however, in removing the gel material without affecting the integrity of the protein crystal. It would be desirable if a protein crystal could be encapsulated in a shell or membrane that was able to protect the crystal from harsh environments which can cause degradation. A crystal contained within a closed, non-degrading environment would be useful to those working in fields requiring high quality, intact protein crystals. Also needed is a way to grow larger and better quality protein crystals by eliminating some of the physical factors which perturb crystal growth and by better controlling the dewatering conditions to promote single crystal growth. It would be desirable to have a method of preparing protein crystals entrapped in liquid filled microcapsules surrounded by a thin, flexible outer membrane, yet are sturdy enough to protect the enclosed crysta
Morrison Dennis R.
Mosier Benjamin
Cate James M.
Fredman Jeffrey
Strzelecka Teresa
The United States of America as represented by the National Aero
LandOfFree
Method for determining the three-dimensional structure of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for determining the three-dimensional structure of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for determining the three-dimensional structure of a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3204382