Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
1997-12-16
2001-06-26
Fredman, Jeffrey (Department: 1655)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C435S004000, C435S091100, C435S810000, C424S009100
Reexamination Certificate
active
06251587
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to a method for determining the prognosis of a patient with a neurological disease.
Neurological diseases include Alzheimer's disease (AD), Creutzfeldt-Jakob disease, Huntington's disease, Lewy body disease, Pick's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis, multiple sclerosis (MS), neurofibromatosis, and diseases without a necessary genetic component such as brain injury, stroke and multi-infarct dementia (MID). Most of these diseases are typified by onset during the middle adult years and lead to rapid degeneration of specific subsets of neurons within the neural system, ultimately resulting in premature death. There are no known cures and few therapies that slow the progression of these diseases.
Parkinson's disease (PD) is a common neurodegenerative disorder which first appears in mid- to late-life. Familial and sporadic cases occur, although familial cases account for only 1-2 percent of the observed cases. The neurological changes which cause this disease are somewhat variable and not fully understood. The disorder generally develops asymmetrically with tremors in one hand or leg and progresses into symmetrical loss of voluntary movement. Eventually, the patient becomes incapacitated by rigidity and tremors. In the advanced stages the disease is frequently accompanied by dementia.
Diagnosis of both familial and sporadic cases of Parkinson's disease can only be made after the onset of the disease symptoms. Anticholinergic compounds, propranolol, primidone and levadopa are frequently administered to modify neural transmissions and thereby suppress the symptoms of the disease, though there is no known therapy which halts or slows the underlying progression.
Multiple Sclerosis (MS) is a neurodegenerative disease of the brain and spinal cord in which a breakdown occurs in the myelin sheathing of the nerve fibers. MS is currently incurable and treatments are few and usually result in only temporary improvements of the disease symptoms.
Stroke is the sudden death of a portion of the brain cells due to a lack of oxygen. A stroke occurs when blood flow to the brain is impaired resulting in abnormal brain function. Brain blood flow can be impaired by blockage or rupture of an artery to the brain.
In the United States, about 400,000 people a year will suffer from a stroke, and up to 40% of these strokes may be fatal. The cost of strokes is not just measured in the billions of dollars lost in work, hospitalization, and the care of survivors in nursing homes. The major cost of a stroke is the loss of independence that occurs in 30% of the survivors. What was a self-sustaining and enjoyable life style may lose most of it's quality after a stroke and family members can often find themselves in a new role as caregivers.
Other cerebral vascular diseases that present similar sequelae to stroke are multi-infarct dementia (MID), vascular dementia (VaD), and cerebrovascular injury or accident. In addition, diseases such as AIDS can often have vascular dementia as a complication. As with the above diseases, there are no known cures for these diseases and most therapies only aid rehabilitation or lower the risk of having another vascular incident.
Apolipoprotein E (apoE) functions as a ligand in the process of receptor mediated internalization of lipid-rich lipoproteins. ApoE is probably also involved in reverse lipid transport. In the central nervous system (CNS), apoE plays a central role in the mobilization and redistribution of cholesterol and phospholipid during membrane remodeling associated with synaptic plasticity. The importance of apoE in the brain is further underscored by the absence of other key plasma apolipoproteins such as apoA1 and apoB in the brain.
The apoE gene on chromosome 19 has three common alleles (E2, E3, E4), which encode three major apoE isoforms. The frequency of the apoE4 allele has been shown to be markedly increased in sporadic Alzheimer's Disease (AD) and late onset familial Alzheimer's disease (AD). This gene dosage effect was observed in both sporadic and familial cases (i.e., as age of onset increases, E4 allele copy number decreases). Women, who are generally at a greater risk of developing Alzheimer's disease, show increased apoE4 allele frequency when compared to age matched men.
The cholinergic hypothesis of geriatric memory dysfunction has raised some fundamental questions regarding the heterogeneity of responses toward different cholinomimetics in AD. The absence of clear beneficial effects of choline and lecithin on geriatric patients with and without AD is still perplexing. Furthermore, multiple clinical studies using esterases inhibitors such as physostigmine and tacrine have shown that, contrary to results found in young subjects, the optimal acute dose necessary to facilitate performance on memory tasks varied considerably among individual aged subjects.
Neurological diseases provide a unique series of complications for the clinicians, patients, and care givers; the diseases often progress rapidly and disrupt a vast number of major life functions. The progressive nature of these diseases makes the passage of time a crucial issue in the choice and administration of different treatment options. It would be desirable to know the severity of the prognosis for patients diagnosed with various neurological diseases.
SUMMARY OF THE INVENTION
We have discovered a method for determining the prognosis of patients with a non-AD neurological disease such as Parkinson's disease, Multiple Sclerosis, or stroke. Our prognostic methods provide a prognosis for the patient, including a prediction of the relative outcome of the patient in terms of rate of progression, severity of disease symptoms, and longevity. The prognostic methods allow clinicians, patients, and family members to make informed choices about therapeutic regimes. This method will also provide for more rapid and cost effective treatment by determining the relative appropriateness of various therapeutic and palliative choices. Even where drug therapy is inappropriate, the prognostic method will provide patients, and their family members, a more informed and realistic expectation of patient outcome including an insight into the most effective rehabilitation strategy, and a forecast of the patient's risk for future disease.
In the first aspect, the invention provides a method of determining the prognosis for a patient diagnosed with a non-AD neurological disease. The method includes: a) identifying a patient already diagnosed with a non-AD disease; b) determining the apoE genotype or phenotype of a patient; and c) converting the data obtained in step b) into a prognosis determination. The prognosis may include a prediction of drug efficacy, patient outcome, and patient risk for future disease events. In preferred embodiments, the method of the invention may further include the steps of determining the BChE genotype or phenotype of a patient, obtaining a patient profile, which may, preferably, include the patient's sex, age, and/or genotype (e.g., presenilin, apolipoprotein E, or BCHE genotype).
In other preferred embodiments of the prognostic method, the patient is diagnosed with a disease selected from the group consisting of: Parkinson's disease (PD), multiple sclerosis (MS), and stroke which shall also include multi-infarct dementia (MID), vascular dementia (VaD), and cerebrovascular injury or accident, for example, as a complication of AIDS.
In a second aspect, the invention provides a method for determining the prognosis of future risks of disease in a asymptomatic mammal. In preferred embodiments the mammal is a human and the method further involves a determination of the mammals BChE genotype or phenotype, obtaining a patient profile, which may, preferably, include the mammal's sex, age, and/or genotype (e.g., presenilin, apolipoprotein E, or BChE genotype).
In a related aspect, the invention provides a kit for performing the prognosis. The kit includ
Schappert Keith
Sevigny Pierre
Wiebusch Heiko
Bieker-Brady Kristina
Clark & Elbing LLP
Fredman Jeffrey
Nova Molecular Inc.
LandOfFree
Method for determining the prognosis of a patient with a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for determining the prognosis of a patient with a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for determining the prognosis of a patient with a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2519376