Method for determining liquid level in a container using an...

Measuring and testing – Liquid level or depth gauge

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06176132

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates in general to the use of ultrasonics to inspect liquids in containers and, in particular, to a method and apparatus for ultrasonically inspecting liquids in containers to determine the condition of the liquids wherein the ultrasonic waves are produced by electromagnetic acoustic transducers (EMATs).
The use of ultrasonics to inspect liquids inside containers using conventional ultrasonic testing methods is well established in the art. In such testing, a piezoelectric (or similar) transducer is coupled to the wall of the container using some form of coupling media such a liquid. The ultrasonic sound waves then propagate through the wall of the container and into the liquid inside the container. The sound wave may then reflect from a solid object in the liquid, or a liquid-air interface, or the opposite wall of the container, and be detected by the ultrasonic transducer. In other applications, a pitch-catch arrangement of two transducers on opposite sides of the container is used to launch and detect the ultrasound. A wide range of measurements and liquids using ultrasonics is possible. Some of the possible measurements include liquid height, detection and imaging of solid objects in liquids (for example medical ultrasonic imaging of internal organs), velocity measurements of liquid flow, and attenuation measurements to determine the condition of the liquid.
Nagata et al. (U.S. Pat. No. 4,821,573) discloses a method and apparatus for ultrasonically inspecting the food contents of a package. An ultrasonic transmitter-receiver system is disposed on at least one side of the package and the occurrence or degree of degradation of the contents is determined based upon the output data from the system. The invention is stated to be particularly useful to inspect foods, pharmaceutical agents, feedstuffs and so-on, and they may be of any desired consistency but only if it is freely-flowable, such as a homogenous solution, a dispersion, a paste, or the like. Before the package is subjected to the ultrasonic inspection, it is preferably shaken so as to disperse the headspace (plenum within the packaging material) into the contents. However, depending upon the types of contents, the shaking process may be omitted. This system may be disposed either in contact with the exterior surface of the package or a short distance therefrom and may be disposed on the exterior wall surface of a water tank when the packages are subjected to ultrasonic inspection while immersed in water. Transmitters can be disposed on only one side of the package with the ultrasonic receiver on the other side, or the ultrasonic transmitter and receiver can both be disposed on the same side of the package so that the receiver receives a reflected ultrasonic wave. By measuring differences in sonic velocities between a transmission wave and a reception wave or the sonic velocity of a reception wave, the time from transmission to reception, and/or the degree of attenuation of the ultrasonic energy, the occurrence and degree of degradation of the contents can be evaluated. The useful wavelength of the ultrasonic waves disclosed is about 0.5 MHz to about 20 MHz. While only a single frequency can be employed at a given time, the accuracy of the evaluation is said to be improved by using a few selected frequencies for the transmission wave. Various sets of tests results based on measurements of reflected waves, transmitted waves, and the like are provided to show how various signals can be related to the condition of the food product contents.
As indicated in the various references cited on the face of Nagata et al., sonic or ultrasonic assessment of the condition of foodstuffs has been around for some time.
Clark et al. (U.S. Pat. No. 2,277,037) discloses a fruit ripeness tester which measures the degree of ripeness of fruit such as melons and pineapples by the measurement and calibration of the vibration characteristics of such objects.
Martner et al. (U.S. Pat. No. 3,357,556) discloses a method and apparatus for testing canned liquid material without removing the material from the can, and is particularly suited for the inspection of batch-prepared infant formula. The system is used to detect alterations in viscosity distribution such as by formation of curds or semi-solid bodies or the like, or increases in viscosity as a liquid material ages which is referred to as “age-thickening”. The cans containing the liquid are rolled along a horizontal path at a preselected constant speed and in the path is disposed a narrow barrier having a height that is small with respect to the diameter of the can. By proper adjustment of the height of the barrier, cans containing a liquid material that is satisfactory will pass over the barrier whereas cans containing spoiled or aged-thickened contents will be arrested by the barrier. The “slushing” or flow pattern of the canned liquid material within the cans is responsible for cans “bouncing” off of the barrier and rolling backwardly.
Baird (U.S. Pat. No. 3,553,636) discloses a non-contacting ultrasonic interface viscosity and percent solid detecting device wherein the transducer is mounted out of contact with the processed liquid. Changes in ultrasonic attenuation characteristics are used as indications of changes in viscosity, percent solids, and/or interface level condition of the liquid contained within a vessel.
Kreula et al. (U.S. Pat. No. 3,913,383) discloses a method and apparatus for testing the contents of packages containing liquid product. Packages of interest are sealed is and contained liquid food products have physical properties that can change as a consequence of deterioration of the product. The package to be tested is placed on a movable support which is subjected to a sudden movement of short duration. A characteristic dependent on the movement of the support is detected, and signals are generated in response to the detected characteristics and compared with the preselected reference signals. In essence, the hydrodynamic behavior of the contents of the package are used to determine whether or not the contents have changed or spoiled.
Edwards (U.S. Pat. No. 4,208,915) discloses a method for determining foreign material in food products using ultrasonic sound. A plurality of transducers are disposed in a rotatable cylinder having a liquid couplant. The cylinder has a surrounding flexible wall which is compressed on top of the surface of the food products. The sound frequencies are transmitted through the food products and received back by a receiver in the transducers for monitoring any variance in the frequency which indicates foreign material in the food products. Black et al. (U.S. Pat. No. 4,384,476) discloses a method and apparatus for ultrasonically inspecting foodstuffs in which the fluid is passed through a curtain of ultrasonic sound. Reflection or absorption of the ultrasonic sound by extraneous materials is detected by ultrasonic sound receiving means and appropriate indication of such detection is given. The foodstuffs being inspected, however, are inspected as they flow pass the inspection point, and have not yet been packaged.
Jarman et al. (U.S. Pat. No. 5,372,042) discloses an ultrasonic inspection method for determining the seal integrity of the bond lines in sealed containers. These particular packages have a lid bonded to a container rim and it is the seal between the lid and the container that is to be inspected. The container rim is disposed between an ultrasonic transmitter system and an ultrasonic receiver system for inspection.
Wertz et al. (U.S. Pat. No. 5,167,157) discloses an ultrasonic method and apparatus for inspecting laminated products, particularly to determine the thickness of the innermost layers of the article. The mean of the measurements from each transducer placed on either side of the multilayered article is calculated to determine these thicknesses. The articles themselves are laminated plastic articles.
Hayward et al. (U.S. Pat. Nos. 3,832,885 and 3,802,252). Hayward

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for determining liquid level in a container using an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for determining liquid level in a container using an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for determining liquid level in a container using an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2459208

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.