Method for determining heterogeneous bottom friction...

Data processing: structural design – modeling – simulation – and em – Electrical analog simulator – Of physical phenomenon

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C703S002000, C703S006000, C703S009000, C703S010000

Reexamination Certificate

active

08000945

ABSTRACT:
A computer-implemented inversion method for determining characteristics of a bottom roughness field using a numerical wave model is provided. Measured wave heights over an area of interest are compared to predicted wave heights calculated by a wave model using an estimated bottom roughness parameter. If the error between the measured wave heights and the predicted wave heights is within a specified tolerance level, the analysis ends and the value of the bottom roughness parameter used in the wave model is retrieved. If the error is not within the specified tolerance level, an Influence Matrix IM is used to obtain a revised estimated bottom roughness parameter. The wave model is re-run using the revised roughness parameter and the resulting predicted wave heights are compared to the measured wave heights. The inversion continues until the wave height error is within the specified tolerance level. When the inversion ends, the bottom roughness field that produced those predicted wave heights is retrieved.

REFERENCES:
Keen et al. “Determining Heterogeneous Bottom Friction Distributions Using a Numerical Wave Model.” 2007.
Anderson, D. L. T., J. Sheinbaum, and K. Haines (1996), Data assimilation in ocean models, Rep. Prog. Phys., 59, 1209-1266.
Anthony, E. J., A. Gardel, F. Dolique, and D. Guiral (2002), Short-term changes in the plan shape of a sandy beach in response to sheltering by a nearshore mud bank, Cayenne, French Guiana, Earth Surf. Processes Landforms, 27, 857-866.
Ardhuin, F.,W. C. O'Reilly, T. H. C. Herbers, and P. F. Jessen (2003), Swell transformation across the continental shelf. Part I: Attenuation and directional broadening, J. Phys. Oceanogr., 33, 1921-1939.
Beck, M. B. (1987), Water-quality modeling: A review of the analysis of uncertainty, Water Resour. Res., 23, 1393-1442.
Bertino, L., G. Evensen, and H. Wackernagel (2003), Sequential data assimilation techniques in oceanography, Int. Stat. Rev., 71, 223-241.
Bidlot, J. R., and M. W. Holt (1999), Numerical wave modeling at operational weather centres, Coastal Eng., 37, 409-429.
Booij, N., R. C. Ris, and L. H. Holthuijsen (1999), A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., 104, 7649-7666.
Dalrymple, R. A., A. B. Kennedy, J. T. Kirby, and Q. Chen (1998), Determining Depth from remotely sensed images, in Coastal Engineering 1998, edited by B. Edge, pp. 2395-2408, Am. Soc. of Civ. Eng., Reston, Va.
Elgar, S., R. T. Guza, B. Raubenheimer, T. H. C. Herbers, and E. L. Gallagher (1997), Spectral evolution of shoaling and breaking waves on a barred beach, J. Geophys. Res., 102, 15,797-15,805.
Greenslade, D. J. M. (2001), The assimilation of ERS-2 significant wave height data in the Australian region, J. Mar. Syst., 28, 141-160.
Grilli, S. T. (1998), Depth inversion in shallow water based on nonlinear properties of shoaling periodic waves, J. Coastal Eng., 35, 185-209.
Gurgel, K. W., G. Antonischki, H. H. Essen, and T. Schlick (1999), Wellen Radar (WERA): A new ground-wave HF radar for ocean remote sensing, Coastal Eng., 37, 219-234.
Haus, B. K. (2007), Surface current effects on the fetch-limited growth of wave energy, J. Geophys. Res., 112, C03003, doi:10.1029/2006JC003924.
Holland, K. T. (2001), Application of the linear dispersion relation with respect to depth inversion and remotely sensed imagery, IEEE Trans. Geosci. Remote Sens., 39, 2060-2072.
Holthuijsen, L. H., N. Booij, M. vanEndt, S. Caires, and C. G. Soares (1997), Assimilation of buoy and satellite data in wave forecasts with integral control variables, J. Mar. Syst., 13, 21-31.
Kaihatu, J. M., and A. Sheremet (2004), Dissipation of wave energy by cohesive sediments, in Coastal Engineering 2004, edited by J. M. Smith, pp. 498-507, World Sci., Hackensack, N. J.
Keen, T. R., G. Stone, J. M. Kaihatu, and Y. L. Hsu (2003), Barrier island erosion during a winter cold front in Mississippi Sound, in CoastalSediments 2003 [CD-ROM], edited by R. A. Davis, A. H. Sallenger Jr., and P. Howd, 13 pp., World Sci., Hackensack, N. J.
Kennedy, A. B., R. A. Dalrymple, J. T. Kirby, and Q. Chen (2000), Determination of inverse depths using direct Boussinesq modeling, J. Waterw. Port Coastal Ocean Eng., 126, 206-214.
Le Dimet, F. X., and O. Talagrand (1986), Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects, Tellus, Ser. A, 38, 97-110.
Madsen, O. S., Y. K. Poon, and H. C. Graber (1988), Spectral wave attenuation by bottom friction: Theory, Coastal Engineering [1988], edited by B. L. Edge, pp. 492-504, Am. Soc. of Civ Eng., Reston, Va.
Mastenbroek, C., and C. F. de Valk (2000), A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar, J. Geophys. Res., 105, 3497-3516.
McBride, R. A., and T. F. Moslow (1991), Origin, evolution, and distribution of shoreface sand ridges, Atlantic inner shelf, U.S.A., Mar. Geol., 97, 57-85.
Narayanan, C., V. N. R. Rao, and J. M. Kaihatu (2004), Model parameterization and experimental design issues in nearshore bathymetry inversion, J. Geophys. Res., 109, C08006, doi:10.1029/2002JC001756.
O'Reilly, W. C., and R. T. Guza (1998), Assimilating coastal wave observations in regional swell predictions. Part I: Inverse methods, J. Phys. Oceanogr., 28, 679-691.
Sheremet, A., and G. W. Stone (2003), Observations of nearshore wave dissipation over muddy sea beds, J. Geophys. Res., 108(C11), 3357, doi:10.1029/2003JC001885.
Sun, N. Z., M. Elimelech, and J. N. Ryan (2001), Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media, Water Resour. Res., 37, 209-222.
Wackerman, C., D. Lyzenga, E. Ericson, and D. Walker (1998), Estimating near-shore bathymetry using SAR, in Proceedings of the 1998 International Geoscience and Remote Sensing Symposium—Sensing and Managing the Environment, edited by T. I. Stein, pp. 1668-1670, Inst. Of Electr. and Electr. Eng., New York.
Weisse, R., and F. Feser (2003), Evaluation of a method to reduce uncertainty in wind hindcasts performed with regional atmospheric models, Coastal Eng., 48, 211-225.
Feddersen, F., E. L. Gallagher, R. T. Guza, and S. Elgar (2003), The drag coefficient, bottom roughness, and wavebreaking in the nearshore, Coastal Eng., 48, 189-195.
Falk Feddersen (2003), Observations of nearshore circulation. Alongshore uniformity, Journal of Geophysical Research, vol. 108, No. C1, 3006, doi:10.1029/2001JC001293.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for determining heterogeneous bottom friction... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for determining heterogeneous bottom friction..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for determining heterogeneous bottom friction... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2703465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.