Surgery – Diagnostic testing
Reexamination Certificate
2000-05-25
2002-12-10
Shaver, Kevin (Department: 3736)
Surgery
Diagnostic testing
Reexamination Certificate
active
06491629
ABSTRACT:
The invention relates to a method for evaluating measured periodic or quasiperiodic signals of medical sensor systems by digitizing the signals and comparing signal sections of the measured signals with stored comparable signal sections.
Characteristics of known technical solutions:
The methods described in the accessible literature for the purpose of establishing the signal pattern similarity of periodic signals of medical sensor systems are generally limited to the signals of the same patient.
It is known in this case to carry out a correlation of ECG signals, measured under normal conditions and filtered, with current ECG signals, which may be defective and/or pathological, of the same [lacuna]. A further example is U.S. Pat. No. 5,240,009. Here, the detection of arrhythmias by comparing averaged and stored waveform complexes with the currently measured ones of the same patient is described. Arrhythmias are also classified in DE 32 09 850. This is performed by comparing the complete profile of the ECG with ECG profiles, previously recorded in a learning phase or calculated, of the patient examined, and the complete storage of an example of the ECG profile for each class of arrhythmias of the patient examined. It is a common feature of all the solutions presented that they permit only the comparison of ECG, or of portions of the ECG, on the same patient.
ECG evaluation systems, for example according to U.S. Pat. No. 5,022,404, detect one or more electrode potentials of electrodes fastened on the patient, and filter and digitize them. Subsequently, these signals are fed via a multiplexer to a microcomputer, present in the ECG evaluation system, with a CPU, main memory etc. Said microcomputer conditions the measured signals, for example by removing the baseline drift in accordance with DE 4,106,856, U.S. Pat. No. 5,357,969, or the removal of muscle artefacts from the ECG in accordance with U.S. Pat. No. 5,259,387. It also calculates the Wilson, Goldberger, Einthoven medical recordings which are required for the medical assessment of an ECG, and/or the Frank orthogonal recordings. In the simplest case, these medical recordings are displayed either on paper strips and/or electronic displays, for example on LCD displays in U.S. Pat. No. 5,022,404, and assessed by the evaluating doctor. Apart from for signal conditioning and display, more intelligent, so-called evaluating electrocardiographs use the microcomputer present in the equipment for the purpose of signal evaluation, signal measurement and, if appropriate, for the purpose of outputting diagnostic information as, for example, in U.S. Pat. No. 5,029,082.
The signal measurement and evaluation is generally performed, as is further described in the patent specifications explained in more detail below, such that the calculated medical recordings are used to determine a number of individual signal parameters, which are important for the cardiological assessment of the ECG, with reference to time duration and amplitude and/or criteria derived therefrom. Problems arise in the case of this determination of individual signal characteristics from the different approaches, for example as in the case of the exact determination of the baseline of the ECG/
1
/ for determining the starting point of the P wave, and of the determination, following thereupon, of the duration of the P wave, which return altogether substantially diverging results, depending on the quality of the method used. The patent specifications are, inter alia, DE 43 10 412 (evaluation of the ST segment and/or of the T wave), DE 39 27 709 (evaluation of the ST segment), U.S. Pat. No. 5,159,932 (filtering of the ECG, QRS finding, averaging) or U.S. Pat. No. 5,020,540 (analysis of the frequency structure of the QRST complexes, waveform template). Further relevant patent specifications include the determination of individual characteristics of the ECG and/or serve to detect limited diagnostic statements, for example in U.S. Pat. No. 4,930,075 (evaluation of the ST segment for establishing ischemias), U.S. Pat. No. 5,025,794 (method for bidirectional filtering for the purpose of detecting late potentials), U.S. Pat. No. 5,355,891 (automatic signal averaging by impact triggering for the purpose of detecting late potentials), U.S. Pat. No. 5,341,811 (HP filtering of at least two channels, weighted averaging, use of adaptive filters for common-mode rejection, late potential detection) or DE 43 04 269 (evaluation of the ST segment for assessing acute ischemic damage).
The signal characteristics determined are printed out on the paper strip or displayed directly together with the signal profile of the ECG. For the purpose of outputting diagnostic indications, the individual signal characteristics determined are combined with one another to form sensible diagnostic indications in a more or less complicated and branched decision tree. This is performed, for example, by the programs on which computer ECG units are based. Such decision trees can have the following form, for example: “if parameter
1
occurs in conjunction with parameter
3
and/or parameter
4
, and condition
1
is simultaneously active in the medical recording a, it is possible to infer the diagnostic statement xyz therefrom”. It is possible in this way to construct a decision tree for each known diagnosis on the basis of individual signal characteristics determined from the ECG in its recordings. Because of the multiplicity of the influencing quantities and parameters, this method is extremely complicated and presupposes extensive cardiological knowledge and/or experience. Changes or improvements to the methods for determining individual parameters, influencing empirically determined threshold values or new medical knowledge require program changes and function tests which are complicated in part, and are therefore associated with high costs and/or require new ECG units with the reworked programs. U.S. Pat. No. 5,355,892 therefore describes an ECG system with portable storage media (floppy disk drive) for storing both ECG and patient information, for example for hospital information systems, and also for reloading or upgrading algorithms for ECG evaluation.
U.S. Pat. No. 5,437,278 describes a medical diagnostic system in which digitized medical data on the state of a patient are compared with likewise digitized medical data which are stored in the memory and determined at an earlier point in time. A diagnosis relating to the patient is derived from the comparison.
The invention is based on the formulated problem of permitting periodic or quasiperiodic signals to be evaluated by means of improved signal comparisons in a way which is independent of medical arguments which are not finally authenticated, and can be done in automated form.
According to the invention, in order to solve this problem the method of the type mentioned at the beginning is characterized in that the periods of the measured signals are normalized to a predetermined period length, and in that the values, digitized with the aid of a specific sampling frequency, of a section of the measured signals, which are normalized to the predetermined period length, are compared with values, formed for the same sampling frequency, of a corresponding section of signals which are stored in a database and normalized to the same predetermined period length.
The evaluation, according to the invention, of measured signals for the purpose of achieving diagnostic information is therefore performed exclusively by a signal comparison with signal patterns stored in the database.
In order to improve the comparability of the measured signals with corresponding signals stored in a database, according to the invention the reference signals of the database are normalized to a predetermined period length and digitized with the aid of a predetermined sampling frequency. In a corresponding way, the measured signals are normalized to the same predetermined period length and digitized with the aid of the same sampling frequency. The comparison of corresponding signals
Bousseljot Ralf
Kreiseler Dieter
Bundesrepublik Deutschland
Foley & Lardner
McCrosky David
Shaver Kevin
LandOfFree
Method for determining at least one diagnostic piece of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for determining at least one diagnostic piece of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for determining at least one diagnostic piece of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2917100