Geometrical instruments – Gauge – Pipe layout or fitting
Reexamination Certificate
2000-01-24
2002-08-20
Fulton, Christopher W. (Department: 2859)
Geometrical instruments
Gauge
Pipe layout or fitting
C033S412000, C033S286000
Reexamination Certificate
active
06434849
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of alignment methods. In particular, the present invention relates to methods for determining a lateral and angular offset between two rotatable parts.
2. Description of Related Art
The method according to the invention for determining a lateral and angular offset between two tandem-arranged shafts relates to an improvement of the invention described in U.S. Pat. No. 5,026,998 to Hoelzl (based on German patent DE 3911307). An analogously equivalent representation of the invention described in the '998 patent is to be found in U.S. Pat. No. 5,263,261 to Piety et al. Both publications are hereby incorporated by reference in this application to avoid repetitive disclosure in the present application.
The present invention proceeds from the finding that in the past, a partial problem to be solved consisted in describing two mechanically caused movements or deflections observed, versus an angular measure and possibly subject to some boundary conditions, by means of suitable characteristic parameters. This can be appreciated from the figures of the above named patent specifications. The said movements are regarded as essentially sinusoidal in nature (i.e. varying according to a sine function) and of a predefined periodicity. The problem to be solved resided, inter alia, in determining the said characteristic values of the sinusoidally varying movements (deflections) from a minimum number of measured values that are “noisy” to a certain amount.
The complete solution as taught from the '998 patent seeks to specify the sinusoidal movements in a single formulation by means of the parameters of a Lissajous ellipse defined by the sinusoidal components of two individual movements. This requires the acquisition of at least five pairs of measured values. At the same time, at least one item of angular information is required to define a spatial reference position for the participating shafts. Moreover, a prescribed direction of rotation of said shafts is to be specified. The associated calculation, according to the '998 patent, provides a two-dimensional analysis of the Lissajous ellipse, which is to be regarded as a locus.
In contrast, the analysis in accordance with U.S. Pat. No. 5,263,261 to Piety et al. is limited to one-dimensional analysis. That analysis of the participating sinusoidal functions is undertaken twice, and will yield, after combining the results obtained, a result which is the same in principle to the results obtained in the '998 patent. However, because of the selected mode of procedure, the result obtained using the method of the '261 patent can be affected by a larger amount of total error, in accordance with a generally known addition theorem for noise factors. It is noted that the following is necessary for carrying out the analysis described in U.S. Pat. No. 5,263,261 (as represented and claimed in '998 patent as a subset of the method proposed there): simultaneously with the acquisition of the above named movement data, whether by mechanical means or by recording appropriately converted electric signals, at least three angular positions of the participating axles, shafts or the like are to be recorded. Formulated otherwise, this means that in accordance with the '261 patent, more than only a single angular position serving as an “interpolation point” is to be acquired and recorded using appropriate measurement technology. As may be gathered from documents published by Pruftechnik AG and CSI, Inc., in order to acquire a plurality of angular positions, electrically or electronically acting inclinometers are employed which have a resolution and reproducibility of approximately one to two angular degrees.
The present invention, now, proceeds from the following consideration: if, as is already known from the two patent specifications cited above, several angular position of the two shafts to be aligned are recorded together with relevant apparent movements or deflections in order to obtain more than only one angular “interpolation point”, these angular data are already considerably “noisy”. That is to say, the angular data are affected by substantial measurement uncertainties because of the technical properties of the inclinometers used. This poses a problem of its own, and a solution of this problem will yield improved data useful for a subsequent calculation of correction and adjustment values for aligning machines. (Note that this problem does not arise per se in the case of the “inclinometer-less” method known from specification of the '998 patent, if only one single reference angle is available.) The said problem arises particularly when modem, high resolution CCD or CMOS pixel based sensors are employed for measuring above mentioned movements. Formulated otherwise, the problem and the task at hand can be described as follows: the “noisy” inclinometer data generate a measurement error, whose influence on the desired final result of computation is to be minimized. Therefore, there exists an unfulfilled need for a method for determining a lateral and angular offset between two tandem-arranged shafts which will minimized the measurement and computational error.
BRIEF SUMMARY OF THE INVENTION
The method according to the present invention for determining a lateral and/or angular offset between rotatable parts such as two tandem-arranged shafts, axles, rollers or the like provides, in accordance with the prior art known per se, that at least one measuring pointer rigidly fitted relatively to one of the shafts, axles or rollers, and at least two measuring pick-ups or reference elements assigned to the measuring pointer or pointers and rigidly fitted on a respectively different shaft, axle or roller being used in a plurality of measuring angular positions corresponding to each other in each case from shaft to shaft to generate two mutually independent measuring signals. For this purpose, mechanical, or preferably laser-optical measuring means as measuring pointers, as has already been specified in the cited patent specifications may be used. Although the present invention may be applied to determine a lateral and/or angular offset between rotatable parts such as two tandem-arranged shafts, axles, rollers or the like, a specific embodiment as applied to alignment of tandem-arranged shaft is discussed hereinbelow. However, the present application should not be construed to be limited to such an application but is also applicable to axles, rollers or the like. In the case of the tandem-arranged shafts, the measuring signals relate both to a measuring angular position component, used as a basis, of the (shortest) spacing which the center axes of the shafts possibly have from one another (parallel offset), and of an angular component at which the center axes are offset askew. The measuring signals correspond to said components (that is to say are normally proportional to them), or can be derived from said components. In accordance with the method according to the invention, it is now proposed to obtain improved measuring results in a novel way, specifically by virtue of the fact that
a) the shafts are turned into at least four different, freely selectable measuring angular positions in which measurements are taken,
b) in each angular position, measuring signals affected by measurement uncertainties are picked up and recorded, the measuring signals being provided as measured-value triplets and respectively comprising: the measured angular value of a measuring angular position, a measured value generated by a first measuring device or reference element, and a measured value generated by a second measuring device or reference element,
c) a calculating device, in particular an electronic device (computer) is used to carry out a three-dimensional fitting calculation or adaptation in which the characteristic values are calculated in accordance with a prescribed fitting principle for an elliptical, periodically continued helical curve (elliptical heli
Fulton Christopher W.
Nixon & Peabody LLP
Pruftechnik Dieter Busch AG
Safran David S.
LandOfFree
Method for determining a lateral and/or angular offset... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for determining a lateral and/or angular offset..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for determining a lateral and/or angular offset... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2951998