Method for detection of buried explosives using a biosensor

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving viable micro-organism

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

434 4, 4342523, 43425231, 43425233, C12N 121, C12Q 102, C12Q 124

Patent

active

059726385

ABSTRACT:
The present invention provides a method for detecting buried explosives which exude vapors of the explosive chemical to the surface. A biological sensor that is applied on the surface produces a detectable signal when it is contacted by the explosive chemical, producing an identifiable pattern for pin-pointing the explosive. The biological sensor is a genetically altered organism.

REFERENCES:
patent: 4683195 (1987-07-01), Mullis et al.
patent: 4683202 (1987-07-01), Mullis
patent: 4965188 (1990-10-01), Mullis et al.
patent: 5491084 (1996-02-01), Chalfie et al.
Hogan et al., "Environmental Influences on Mine Detection," Special Report 90-31, Aug. 1990, Cold Regions Research & Engineering Laboratory.
Pennington et al., "Effects of Wet and Dry Cycles on TNT Losses from Soils," Technical Report EL-92-37, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
Phelan and Webb, "Environmental Fate and Transport of Chemical Signatures from Buried Landmines--Screening Model Formulation and Initial Simulations," Sandia National Report SAND97-1426, UC-741, Jun. 1997.
Heim et al., "Wavelength mutations and posttranslational autoxidation of green fluorescent protein," Proc. Natl. Acad. Sci. USA 91: 12501-12504 (1994).
Walsh and Jenkins, "Identification of TNT Transformation Products in Soil," U.S. Army Corps of Engineers Special Report 92-16, Jun., 1992.
Duque et al., "Construction of a Pseudomonas Hybrid Strain that Mineralizes 2,4,6-trinitrotoluene," J. Bacteriol. 175:2278-2283 (1993).
Boopathy and Kulpa, "Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B strain)," Can. J. Microbiol. 39: 430-433 (1993).
Haidour and Ramos, "Identification of Products Resulting from the Biological Reduction of 2,4,6-trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene by Pseudomonas Sp.," Environ. Sci. Technol., 30:2365-2370 (1996).
Higson, "Microbial Degradation of Nitroaromatic Compounds," Adv. App. Microbiol., 37:1-19 (1992).
Vorbeck et al., "Intitial Reductive Reactions in Aerobic Mineral Metabolism of 2,4,6-trinitrotoluene," Appl. Environ. Microbiol., 64:246-252 (1996).
Alvarez et al., "Pseudomonas aeruginosa Strain MA01 Aerobically Metabolizes the Aminodinitrotoluenes Produced by 2,4,6-trinitrotoluene Nitro Group Reduction," Can. J. Microbiol., 41:984-991 (1995).
Spain, "Biodegradation of Nitroaromatic Compounds," Ann. Rev. Microbiol., 49:523-555 (1995).
Martin et al., "Denitration of 2,4,6-trinitrotoluene by Pseudomonas savastanoi," Can. J. Microbiol., 43:447-455 (1997).
Schackmann and Muller, "Reduction of Nitroaromatic Compounds by Different Pseudomonas Species Under Aerobic Conditions," Appl. Microbiol. Biotechnol., 34:809-813 (1991).
Jenkins et al., "Liquid Chromatographic Method for Determination of Extractable Nitroaromatic and Nitramine Residues in Soil," J. Assoc. Off. Anal. Chem. 72:890-899 (1989).
Fiorella and Spain, "Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52," Appl. Environ. Microbiol., 63:2007-2015 (1997).
Pasti-Grigsby et al., "Transformation of 2,4,6-trinitrotoluene (TNT) by Actinomycetes Isolated from TNT-Contaminated and Uncontaminated Environmental," Appl. Environ. Microbiol., 62:1120-1123 (1996).
Lewis et al., "Products of Anaerobic 2,4,6-trinitrotoluene (TNT) Transformation by Clostridium bifermentans," Appl. Environ. Microbiol., 62:4669-4674 (1996).
Bruns-Nagel et al., "Microbial Transformation of 2,4,6-trinitrotoluene in Aerobic Soil Columns," Appl. Environ. Microbiol., 62:2651-2656 (1996).
Williams et al., "Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions," J. Ind. Microbiol. 9: 137-144 (1992).
Dawel et al., "Structure of a Laccase-Mediated Product of Coupling of 2,4-Diamino-6-Nitrotoluene to Guaiacol, a Model for Coupling of 2,4,6-Trinitrotoluene Metabolites to a Humic Organic Soil Matrix," Appl. Environ. Microbiol. 63: 2560-2565 (1997).
Spencer et al., "Soil-Pesticide Interactions and Their Impact on the Volatilization Process," in Environmental Impacts of Soil Component Interactions--Land Quality, Natural and Antropogenic Organics, Huang (ed.), pp. 371-382, CRC Press, Inc. (1995).
Andreux et al., "Factors Affecting the Movements, Reactions, and Biotransformations of Xenobiotics," in Environmental Impacts of Soil Component Interactions--Land Quality, Natural and Antropogenic Organics, Huang (ed.), pp. 371-382, CRC Press, Inc. (1995).
Defense Threat Reduction Agency, Test Report for the Microbial Mine Detection System (MMDS), DSWA IACRO HD1102-8-1490-097, 15 Nov. 1998.
R. S. Burlage et al., "Development and Application of the lux Gene for Environmental Bioremediation," Society Of Photo-Optical Instrumentation Engineers, 2835: 42-51 (1996).
Prasher et al., "Primary Structure of the Aequorea Victoria Green-Fluorescent Protein," Gene 111: 229-233 (1992).
Chalfie et al., "Green Fluorescent Protein as a Marker for Gene Expression," Science 263: 802-805 (1994).
Lorenz et al., "Isolation and Expression of a cDNA Encoding Renilla Reniformis Luciferase," Proc. Natl. Acad. Sci. 88: 4438-4442 (1991).
SanPietro et al., "Sequence of the Chromogenic Hexapeptide of Renilla Green-Fluorescent Protein," Abstracts 21st Annual Meeting of the American Society for Photobiology (Jun. 1993).
Edward A. Meighen, "Molecular Biology of Bacterial Bioluminescence," Microbiological Reviews, 55: 123-126 (1991).
E.A. Meighen, "Genetics of Bacterial Bioluminescence," Annu. Rev. Genet 28: 117-139 (1994).
Sambrook et al., Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press (1989).
de Lorenzo et al., "Mini-Tn5 Transposon Derivatives for Insertion Mutagenesis, Promoter Probing, and Chromosomal Insertion of Cloned DNA in Gram-Negative Eubacteria," Journal of Bacteriology, 172: 6568-6572 (1990).
Simon et al., "New Derivatives of Transposon Tn5 Suitable for Mobilization of Replicons, Generation of Operon Fusions and Induction of Genes in Gram-Negative Bacteria," Gene 80: 161-169 (1989).
Akbar et al., "Isolation and Characterization of csbB, a Gene Controlled by Bacullus Subtilis General Stress Transcription Factor .delta..sup.B," Gene 177: 123-128 (1996).
M. Fuller et al., "Microbial Ecology of Soil Slurries Degrading 2,4,6-Trinitrotoluene (TNT)," Abstracts, 96th Annual Meeting of the American Society for Microbiology (May, 1996).
Parales et al., "Genetic Engineering Changes the Substrate Oxidation Profile of 2-Nitrotoluene 2,3-Dioxygenase," Abstracts, 96th Annual Meeting of the American Society for Microbiology (May, 1996).
Fiorella et al., "Transformation of TNT by Pseudomonas Pseudoalcaligenes Strain JS45," Abstracts, 96th Annual Meeting of the American Society for Microbiology (May, 1996).
Noguera et al., "Cometabolic Biotransformation of Nitroaromatic Compounds by a Psuedomonas Geruginosa Strain," Abstracts, 96th Annual Meeting of the American Society for Microbiology (May, 1996).
Funk et al., "Biodegradation of TNT by a Strain of Clostridium Bifermentens," Abstracts, 96th Annual Meeting of the American Society for Microbiology (May, 1996).
Alatriste-Mondracon et al., "Degradation of Hexahydro-1,3,5-trinitro-1,3,5-Triazine (RDX) by Clostridium Putrificum," Abstracts, 96th Annual Meeting of the American Society for Microbiology (May, 1996).
Winship et al., "Fungal Bioremediation of Explosives Contaminated Soil," Abstracts, 96th Annual Meeting of the American Society for Microbiology (May, 1996).
Blehert et al., "Bacterial Degradation of Nitroglycerin," Abstracts, 96th Annual Meeting of the American Society for Microbiology (May, 1996).
Binks et al., "Degradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) by Stenotrophomonas Maltophilia PBI," Applied and Environmental Microbiolgy, 61: 1318-1322 (1995).
Robert.S. Burlage et al., "A Transposon For Green Fluorescent Protein Trancriptional Fusions: Application For Bacterial Transport Experiments," Gene, 173: 53-58 (1996).
Robert S. Burlage et al., "Monitoring of Naphthalene Catabolism by Bioluminescence With Nah-lux Transcriptional Fusions," Journal of Bacteriology,172: 4749-4757 (1990).
J.M.H. King et al., "R

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for detection of buried explosives using a biosensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for detection of buried explosives using a biosensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for detection of buried explosives using a biosensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-762427

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.