Coating processes – With post-treatment of coating or coating material – Heating or drying
Reexamination Certificate
2000-09-22
2002-05-14
Cameron, Erma (Department: 1762)
Coating processes
With post-treatment of coating or coating material
Heating or drying
Reexamination Certificate
active
06387446
ABSTRACT:
The invention relates to a process for the deposition of titanium oxide layers on any desired substrates. The invention particularly relates to a sol-gel process in which a soluble powder which can be redissolved again in many solvents and solvent mixtures is first prepared. The coating solution prepared from the powder can be used for the production of, inter alia, electrochromic monitors, optical reflective layers, photocatalytic layers and photoanodes.
The use of TiO
2
for such purposes is described, for example, in the following publications:
T. Ohzuko, T. Hirai, Electrochemica Acta, 27 (1982), 1263; H. Pulker, Thin film Science and Technology, Elsevier, Amsterdam (1984), volume 6; and J. Livage, in Better Ceramics Through Chemistry, MRS, Pittsburgh, Pa. (1988), 717.
The photocatalytic purification of waste waters is another promising use of this material (cf. K. Kato, A. Tsuzuki, Y. Torii, H. Taoda, T. Kato, Y. Butsugan, J. Mat. Sci., 30 (1995), 837 and K. Kato, A. Tsuzuki, Y. Torii, H. Taoda, T. Kato, Y. Butsugan, J. Mat. Sci., 29 (1994), 5911). Compared with physical or physical/chemical deposition methods, such as sputtering, vaporization, chemical vapour deposition and metal-organic decomposition, wet chemical preparation via the sol-gel process offers a large number of advantages: No cost-intensive coating apparatuses using the vacuum technique are necessary, large areas can easily be coated, and the inside of cylindrical substrates is also readily accessible to coating solutions. The process temperatures needed are low compared with conventional oxide-ceramic processes, which allows coating of metals or glass substrates. Such processes are described, for example, in Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, Boston, 1990).
Coating solutions employed in the sol-gel process are as a rule prepared from metal alcoholates and transition metal alcoholates. Since these compounds are not stable to hydrolysis, their storage stability under normal conditions is limited. Chemical modification of the alkoxides by complexing agents is also does not always lead to a stabilization of the solutions which is satisfactory for industrial uses.
The invention is therefore based on the object of providing a process for the deposition of titanium oxide layers which does not have the abovementioned disadvantages. The invention is furthermore based on the object of providing a process for the deposition of TiO
2
which allows deposition with a layer thickness of more than 150 nm within one coating step. The process here should also allow coating of large areas of substrates of different composition (various glasses, ceramic substrates, steel) and variable geometry (flat specimens, tubes).
The invention relates to a process for the preparation of titanium oxide layers which comprises the following stages:
(i) preparation of a soluble, titanium-containing powder by:
(a) reaction of a titanium alcoholate of the general formula Ti(OR)
4
, in which the radicals R are identical or different and represent straight-chain, branched or cyclic alkyl or alkenyl radicals having 1 to 10 carbon atoms, which optionally have one or more carbonyl and/or ester and/or carboxyl functions, with one or more polar compounds with complexing, chelating properties,
(b) heating of the solution,
(c) adding water to the solution, optionally in the presence of a catalyst,
(d) concentrating the solution until a powder is obtained,
(ii) dissolving of the powder to form a sol,
(iii) coating of a substrate with the sol and
(iv) heating of the coated substrate.
According to a preferred embodiment of this process, titanium alcoholates of the general formula Ti(OR)
4
in which R represents a straight-chain or branched alkyl radical having 2 to 6 carbon atoms are employed. It is furthermore preferable for one or more of the radicals OR in the abovementioned formula to be derived from oxo-esters, &bgr;-diketones, carboxylic acids, ketocarboxylic acids or ketoalcohols. It is particularly preferable for the radical OR to be derived from acetylacetone. Examples of suitable titanium alcoholates are Ti(OEt)
4
, Ti(Oi—Pr)
4
, Ti(On—Pr)
4
and Ti(AcAc)
2
(Oi—Pr)
2
.
Instead of synthesizing a coating solution directly, according to the invention a soluble titanium-containing powder is first prepared. In this procedure, a titanium alcoholate is reacted with a polar, complexing and chelating compound. Such compounds are, for example, diketones, P-ketoesters, acetylacetone, glycol ethers, diols, polyhydric alcohols, aminoalcohols, glycerol, hydroxydiols, aminothiols, dithiols, diamines or mixtures thereof.
The use of diketones, in particular 1,3-diketones, such as acetylacetone, is particularly preferred.
The polar complexing and chelating compound is employed in the process according to the invention in an amount of 0.5 to 20 mol, preferably 0.5 to 3 mol/mol of titanium alcoholate.
After the reaction of the titanium alcoholate with the polar complexing and chelating compound, the resulting solution is heated to a temperature in the range from room temperature up to the boiling point of the solvent, preferably to 80 to 100° C., over a period of up to 24 hours, preferably over a period of 0.5 to 2 hours.
An amount of 0.5 to 20, preferably 1 to 3 mol of H
2
O per mol of titanium alcoholate is then added to the solution, optionally in the presence of a catalyst (H
3
O
+
, OH
−
) or dilute inorganic or organic acids or alkalis, such as HNO
3
, HCl, NaOH or NH
3
, or dilute solutions of metal salts, such as NaBF
4
, and the mixture is concentrated, preferably under reduced pressure. A pulverulent solid which has a titanium oxide content of 30 to 55 wt. % is obtained by this procedure.
The powder according to the invention has an unlimited storage stability in air.
The powder according to the invention can be redissolved in numerous solvents or solvent mixtures and can thus be used for the preparation of a coating solution for the deposition of titanium oxide layers, which the invention also provides. Suitable solvents are alcohols, diols, diol ethers, amines, water and mixtures thereof. Important properties of the coating solution, such as solids contents and viscosity, can be adjusted in a controlled manner and matched to the coating process and substrate by the choice of solvents or solvent mixtures.
Suitable alcohols are aliphatic alcohols, in particular methanol, ethanol, isopropanol and butanol.
Suitable diol ethers are e.g. methoxyethanol, butoxyethanol or isopropoxyethanol.
Suitable diols are those of the general formula HO(CH
2
)
n
OH, in which n represents an integer from 2 to 8, such as e.g. ethanediol, propanediol, butanediol etc. Alcohols of higher functionality or polyols, such as e.g. glycerol, can also be employed in the process according to the invention.
Suitable amines are mono-, di- or trialkylamines, the alkyl groups of which can optionally be substituted by one or more OH group(s). Preferred amines have the general formula NR
x
R′
3-x
, wherein R and R′ can be identical or different and can represent methyl, ethyl, hydroxyethyl and hydrogen and x denotes an integer from 0 to 3.
The coating solutions according to the invention preferably comprise water.
Coating solutions which comprise a mixture of propanediol, triethanolamine and water as the solvent are especially preferred, the best results being achieved with coating solutions which comprise the abovementioned solvents in a weight ratio of 60:10:30 at a solids content of 15% titanium dioxide.
To prepare the coating solution according to the invention, the solvent or solvent mixture is mixed with the titanium-containing powder. For this, the solvent is preferably initially introduced into the mixing vessel and the powder is added in portions.
The mixture is then heated to a temperature in the range from room temperature up to the boiling point of the solvent mixture, preferably in the range from 80 to 1000° C., over a period of 10 to 60 minutes, so that a colloidal solution (sol) results.
The refractive index
Jahn Rainer
Lobmann Peer
Merklein Stephan
Burns Doane Swecker & Mathis L.L.P.
Cameron Erma
Fraun-Hofer-Gesellschaft Zur Forderung der Angewandten Forschung
LandOfFree
Method for depositing titanium oxide layers using soluble... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for depositing titanium oxide layers using soluble..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for depositing titanium oxide layers using soluble... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2824379