Metal working – Method of mechanical manufacture – Electrical device making
Reexamination Certificate
2002-05-06
2004-12-28
Tugbang, A. Dexter (Department: 3729)
Metal working
Method of mechanical manufacture
Electrical device making
C029S832000, C029S852000, C029S884000, C174S260000, C257S786000, C361S782000
Reexamination Certificate
active
06834427
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to packages for integrated circuits having ball grid arrays. More particularly, the present invention provides a ball grid array having open spaces in which vias are positioned.
BACKGROUND
Presently used to mate packages for integrated circuits with printed circuit boards, ball grid arrays (BGA's) are leadless, surface-mounted packages in which solder balls interconnects cover the bottom surface of the package in a checkerboard fashion. Typically, a mass reflow process is used to attach BGA's to printed circuit boards (PCB's), a term generally used for printed circuit configurations such as rigid or flexible, single, double, or multilayered boards that are completely processed. Integrated circuit (IC) is the term generally used for a microelectronic semiconductor device consisting of many interconnected transistors and other components. Typically, IC's are fabricated on a small rectangle called a die that is cut from a silicon wafer known as a substrate. Different areas of the substrate are “doped” with other elements to make them either “p-type” or “n-type.” Polysilicon or aluminum tracks are etched in one to three (or more) layers deposited over the substrate's surface(s). The die is then connected into a package using gold wires, which are welded to “pads,” usually found near the edge of the die.
Ball grid arrays formed on multilayer substrates typically incorporate within the BGA pattern drilled holes in laminate called vias, which connect different layers of circuitry. Typically, at least one via is positioned between two diagonal balls.
Inductance is the ability of a conductor to produce an induced voltage when cut by a magnetic flux. A conductor is a material capable of conveying an electric current. Virtually all conductors have inductance, but the amount of inductance associated with each conductor varies according to a number of factors such as type of conductive material, shape of the conductor, length of the conductor, and so forth. For example, a shorter wire has less inductance than a long wire because less conductor length cut by a magnetic flux produces less voltage. Similarly, a straight wire has less inductance than a coiled wire because the conductor concentrates more conductor length in a given area of flux.
One characteristic of inductors is that the faster the speed at which the flux changes, the more voltage is induced. The flux may take the form of a change in current. For example, alternating current (AC) circuits continually produce an induced voltage because the current is continuously changing. The faster the current changes, the higher the induced voltage, which always opposes the change in current. If current is increased, the polarity of the induced voltage opposes the increase in current, and vice versa. However, it is not necessary for the current to alternate directions. Inductance affects DC circuits whenever the value of the DC current changes, such as when a DC circuit is turned on and off.
There are four types of inductance: system inductance, self-inductance, mutual inductance, and stray inductance. System inductance is a combination of all the self inductances, mutual inductances, and stray inductances found within a circuit. Self inductance is the ability of a conductor to induce voltage in itself when the current changes. Mutual inductance typically occurs whenever two conductors are positioned closely together such that a varying flux resulting from a change in current in Conductor A cuts across and induces voltage in Conductor B. This induced voltage, in turn, generates a magnetic flux that cuts across and induces a voltage in conductor A. Because a current in one conductor can induce voltage in the adjacent conductor, the conductors are said to have mutual inductance. Stray inductance is the inductance of any wiring not included in discrete inductors, for example, traces, capacitors, V
ss
and V
dd
balls, etc. In most cases, stray inductance is negligible. However, in high frequency circuits, where the current changes very quickly, stray inductance can have appreciable effects. To offset this appreciable effect, traces. leads, and current return path are usually kept as short as possible.
Each of these types of inductance discussed above seriously affects, and in some cases limits, the i/o speeds of integrated circuits. For example, in the case where all the bus outputs of a circuit simultaneously switch the same way, the circuit is deluged with a tidal wave of current. This current surge generates an appreciable induced voltage in the circuit's conductors. The induced voltage flowing opposite to the wave of current, reduces the amount of current flowing through the circuit, thereby slowing the rate of current flow. It is clear that faster i/o times will result if system inductance can be minimized. To minimize system inductance, various embodiments of the present invention create a void or voids by removing a ball or balls from the ball grid array, shorten the lengths of trace routing paths and the length of the return current path as much as possible, and facilitate routing of leads and traces by placing pairs of vias within a void area or areas.
The benefit of the present invention is that it provides a smaller sized package area, hence a lower manufacturing cost, while not compromising, but improving V
dd
and V
ss
current path (e.g. return current path) inductance, which in turn, relates to i/o speed. Additionally, the present invention provides vias having a mutual inductance between + and − polarities, and provides mounting sites for capacitors that have very short routes to corresponding vias. Furthermore, the present invention maintains or enhances routability.
In a circuit board, the inductance of the return current path lies both in the package and in the main PCB that the package mounts to. The vias as referred to in this text are for connections within the main PCB. In particular, the vias for the bypass capacitors which conduct current from top to bottom of the PCB can have significant inductance. In fact, via inductance is approximately ten times (10×) the ball inductance. Because it is desirable to minimize the system inductance, not just the ball inductance, the present invention creates regions for more vias by removing balls.
In summary, problems common in the art include low mutual inductance between vias of opposite directed current flow, a shortage of routing channels, increased board size, increased cost of manufacturing, increased routing inductance, and lengthened current paths. Solutions to these and similar problems are provided by various embodiments of the present invention.
SUMMARY OF THE INVENTION
In one embodiment, a ball grid array (BGA)is positioned on one surface of a multilayer substrate. The array has a first density of balls, and a first open space therein that has a second density of balls lower than the first density of balls. A via or a pair of vias may be positioned within the first open space. In one embodiment, a ground via and a power via are combined to form a via pair. In another embodiment, capacitors are connected to the vias.
Various examples for practicing the invention, other advantages, and novel features thereof will be apparent from the following detailed description of various illustrative preferred embodiments of the invention, reference being made to the accompanying drawings.
REFERENCES:
patent: 5261153 (1993-11-01), Lucas
patent: 5637920 (1997-06-01), Loo
patent: 5686699 (1997-11-01), Chu et al.
patent: 5717245 (1998-02-01), Pedder
patent: 5982633 (1999-11-01), Jeansonne
patent: 6057596 (2000-05-01), Lin et al.
patent: 6114769 (2000-09-01), Thompson, Sr.
patent: 6207476 (2001-03-01), Zhao et al.
patent: 6235997 (2001-05-01), Asada et al.
patent: 6512680 (2003-01-01), Harada et al.
Baker Paul
Cornelius Bill
Apple Computer Inc.
Blakely , Sokoloff, Taylor & Zafman LLP
Nguyen Donghai D.
Tugbang A. Dexter
LandOfFree
Method for depopulating of a ball grid array to allow via... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for depopulating of a ball grid array to allow via..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for depopulating of a ball grid array to allow via... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3281779