Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – With means to attach graft to natural blood vessel
Reexamination Certificate
1999-03-05
2002-03-12
McDermott, Corrine (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Arterial prosthesis
With means to attach graft to natural blood vessel
C523S001000, C606S213000, C604S096010
Reexamination Certificate
active
06355061
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to a system and method for emplacing a prosthesis and, more particularly, to a delivery catheter and method of use for placement within a corporeal lumen of a bifurcated graft having attachment systems.
It is well established that various fluid conducting body or corporeal lumens, such as veins and arteries, may deteriorate or suffer trauma so that repair is necessary. For example, various types of aneurysms or other deteriorative diseases may affect the ability of the lumen to conduct fluids and in turn may be life-threatening. In some cases, the damaged lumen is repairable only with the use of prosthesis such as an artificial vessel or graft.
For repair of vital vessels such as the aorta, surgical repair is significantly life-threatening. Surgical techniques known in the art involve major surgery in which a graft resembling the natural vessel is spliced into the diseased or obstructed section of the natural vessel. Known procedures include surgically bypassing the damaged or diseased portion of the vessel and inserting an artificial or donor graft attached to the native vessel by an anastomosis.
It is known within the art to provide a prosthesis for intraluminal repair of a vessel, such as an abdominal aorta having an aneurysm. The art has taught to provide a prosthesis positioned in a vessel then securing the prosthesis within the vessel with hooks or staples that are mechanically extended by the user. The early prior art devices were large in diameter, mechanically complex and in turn were susceptible to mechanical failure. Prior intraluminal grafting systems have embodied capsule catheters or balloon catheters, but were relatively stiff and of a relatively high profile. Similarly, the prior art systems were configured in such a way that the graft was relatively difficult to deploy in the correct position. In addition, prior systems having a capsule catheter assembly were usually configured such that the prosthesis was disposed within a unitary capsule.
In recent years, several devices have been developed to attempt to treat an aortic aneurysm through intraluminal repair. For example, U.S. Pat. No. 4,140,126 (Feb. 20, 1979), Choudhury, discloses a method and article for performing an aneurysm repair, wherein a prosthetic graft is utilized to replace the damaged segment of the blood vessel. A plurality of radially spaced anchoring pins are located adjacent each end of the graft and provide means for securing the graft to the wall of the vessel. An assembly is provided for moving the graft within the vessel and permanently anchoring the graft to the wall of the vessel.
U.S. Pat. No. 4,562,596 (Jan. 7, 1986), Kornberg, discloses a bifurcated aortic graft constructed for intraluminal insertion having a plurality of struts having angled hooks with barbs at their superior ends. An assembly for inserting the graft and implanting the hooks into the vessel lumen is also disclosed.
U.S. Pat. No. 4,787,899 (Nov. 29, 1988), Lazarus, discloses an intraluminal grafting system including a hollow graft having an attachment means located at one end of the graft. The system includes positioning means for moving the graft within the vessel, the positioning means having a capsule positioned at one end for covering the graft attachment means. The disclosed positioning means further includes an inflatable member for securing the attachment means within the lumen.
EPO Pub. No. 0 461 791 A1 (Dec. 18, 1991), Barone et al. discloses an aortic graft and apparatus for repairing an aneurysm. The disclosed system includes a tube graft secured within the aorta and an attachment means at each end of the graft. Intraluminal delivery is accomplished using a catheter having a balloon for expanding and securing the attachment means. The graft and attachment means are preferably enclosed by a sheath which covers the entire graft and attachment means.
U.S. Pat. No. 5,104,399 (Apr. 14, 1992), Lazarus, discloses an intraluminal grafting system including a tubular graft having attachment means positioned at both ends. The system includes a positioning means for transporting the graft through a vessel lumen and for deploying the graft within the lumen. The positioning means includes an inflatable member, a capsule and means for removing the graft from the capsule. The capsule is disclosed as a rigid cylindrical member covering the entire graft.
EPO Pub. No. 0 508 473 A2 (Oct. 14, 1992), Piplani et al., discloses an intraluminal grafting system including a catheter having a capsule formed of a helical wrap of metal ribbon. A bifurcated graft having attachment means is removably disposed within the capsule. Means is provided for moving the graft from the capsule, and an inflatable member is provided for securing the attachment means within a vessel lumen.
U.S. Pat. No. 5,256,150 (Oct. 26, 1993), Quiachon et al., discloses a large diameter sheath for use in introducing a catheter in the body of a patient. The sheath includes an flexible elongate sheath tube and a backflow adapter having a hemostatic valve secured to the proximal extremity of the sheath tube. The sheath may be used for introducing a large-diameter deployment catheter into a femoral artery of the patient.
U.S. Pat. No. 5,275,622 (Jan. 4, 1994), Lazarus et al., discloses an intraluminal grafting system including a catheter having a capsule formed of a helical wrap of metal ribbon. A tubular graft having attachment means at both ends is removably disposed within the capsule. Means is provided for moving the graft from the capsule, and an inflatable member is provided for securing the attachment means within a vessel lumen.
The foregoing patents and publications are incorporated herein by reference.
To provide consistency with the common usage of terms used in the medical surgical arts in the United States, the terms “proximal, distal, inferior and superior” are used with a certain regularity within the present specification. Proximal refers to parts of the system, such as catheters, capsules and wires, which are closest to the user and closest to the portion of the system outside or exterior of the patient. Distal refers to the point farthest from the user and typically most interior to the corporeal lumen. The term superior refers to a location situated above and is used herein in description of the graft and attachment system. Inferior refers to the point situated below and again is used herein with the graft and attachment system. Thus, for applications in the abdominal aorta which use a femoral approach, the superior end of the graft resides within the most distal portion of the delivery catheter. Likewise, the inferior end of the graft resides within the proximal capsule which is on the most distal portion of the capsule catheter.
The term “ipsilateral” typically refers to a vessel or part of a device which resides on the same side in which a device enters a lumen. For example, the ipsilateral tubular leg of a graft would be the tubular leg which resides in the iliac artery in which the capsule catheter enters the aorta. Similarly, the term “contralateral” refers to a vessel or device residing on the opposite side of which the main device enters the aorta. For example, the contralateral attachment system resides in the contralateral iliac artery which is on the opposite side of the aorta from which the capsule catheter enters the aorta.
SUMMARY OF THE INVENTION
The present invention comprises an intraluminal delivery system for securing a prosthesis within or between vessels or corporeal lumens of an animal, such as a human. The preferred embodiment of the placement system is configured for introducing a graft into a corporeal lumen and positioning the graft in the area of the aortic bifurcation. The delivery system includes a balloon catheter, a capsule catheter and a capsule jacket.
In general, it is an object of the present invention to provide an intraluminal grafting system and method which overcome the disadvantages of the prior art systems. The present invention comprises a system and method
Baker Steve G.
Johansson Peter K.
Piplani Alec A.
Quiachon Dinah B.
Williams Richard S.
Endovascular Technologies, Inc.
Fulwider Patton Lee & Utecht LLP
Koh Choon P.
McDermott Corrine
LandOfFree
Method for deploying bifurcated graft using a multicapsule... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for deploying bifurcated graft using a multicapsule..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for deploying bifurcated graft using a multicapsule... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2872156