Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
1999-09-11
2001-07-03
Mendez, Manuel (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S022000, C604S294000
Reexamination Certificate
active
06254587
ABSTRACT:
The present invention generally relates to surgical instruments, and more particularly, is directed to a handpiece for ophthalmic surgical procedures. Phacoemulsification handpieces find common use by ophthalmic surgeons and are used for cutting, aspirating, and irrigating eye chambers during surgical operations. In view of the fact that ocular surgery many times includes the cutting and/or fragmenting of unwanted tissues, for example in cataract surgery, such cut or fragmented tissues must be removed from the eye.
Phacoemulsification involves the generation of an ultrasound signal which is a series of cyclical mechanical vibrations in a frequency range beyond that detectable by normal human hearing. The ultrasonic signal is generated by a transducer that is driven by an electrical signal in the frequency range between about 20 and about 100 kHz in equipment presently available for this application. Typically the transducer mechanism includes either piezoelectric or magnetostrictive elements.
The energy resulting from the ultrasonic signal is coupled to the human lens by a needle attached to the transducer. Typically, the needle is made from an inert alloy of titanium or stainless steel. Once coupled to the human lens, the ultrasonic energy is capable of cutting, fragmenting and emulsifying tissue, for example a cataract. Once the material is fragmented, however, it must be removed from the eye. In order to accomplish the removal of unwanted tissue particles, the ultrasonic needle and is hollow and an aspiration system is connected to the hollow needle. A balanced saline solution is typically injected into the eye during the surgical procedure in order to irrigate the tissue and facilitate aspiration of the tissue particles. The saline solution is infused into the surgical site by means of a hollow sleeve surrounding the needle.
Thus, a single phacoemulsification handpiece not only provides a device for cutting and/or fragmenting eye tissue but for providing irrigating fluid and the subsequent aspiration of the fluid and cut or fragmented tissue.
Importantly, in many ophthalmic surgical procedures such as, for example, in ocular lens implantation, cataract surgery, and retinal detachment repair, a viscous gel-like composition is also injected into the eye at some time during the surgical procedure. The viscous gel-like composition is used to coat the chambers of the eye in order to protect sensitive tissue in particular, the corneal and endothelium, from trauma.
These gel-like materials are generally classified as viscoelastic materials. While many compositions have been utilized, commonly employed compositions include solutions of hyaluronic acid, chondroitin sulfate and methylcellulose. The many various viscoelastic materials are generally termed as either adhesive viscoelastic, such as Viscoat®, or cohesive viscoelastic, such as Healon®.
Accordingly, as will be surmised from the hereinabove noted ophthalmic surgical procedures, the phacoemulsification handpieces for fragmentation, irrigation and aspiration, are commonly used with additional and distinct apparatus suitable for introducing and/or a removal of such viscoelastic material. A brief description of the types of viscoelastic material utilized and methods utilized is given in U.S. Pat. No. 5,358,473 which is herewith incorporated by reference in order to provide disclosure for the types of viscoelastic materials and the procedures commonly utilized in ophthalmic surgeries employing such viscoelastic materials.
Adhesive and cohesive viscoelastic materials have the characteristic of becoming more viscous upon application of pressure thereon.
Conventionally, this material is injected into the eye chambers by means of a hand held syringe or cannula. Because the flow characteristics and viscosity of viscoelastic materials vary to some degree depending upon such factors as the particular composition of the material, the temperature of the material, and the overall geometry of the injection apparatus, a manually operated syringe is commonly used to enable direct physician control of the injection rate of the material into the eye. In addition, the manual syringe provides for injection of the material through a short lumen, which is important in light of the property of the material becoming more viscous upon an increase in external pressure.
Viscoelastic material is injected into the eye at the beginning of the surgical procedure and oftentimes during the procedure in the event a physician determines that additional protection of sensitive eye tissue is required.
Thus, it is conventional for a physician to switch instruments during surgery in order to perform these various important tasks.
Because multiple tasks are attended to during intraocular surgery which must be carefully and precisely performed, it would be clearly advantageous to enable a physician to perform such multiple tasks using a single hand held, easily controllable instrument rather than using multiple instruments for different tasks. In addition, it would be advantageous to enable the performance of intraocular surgery through a single incision in the eye.
It should be appreciated that frequent switching of surgical instruments during delicate eye surgery presents increased risk of injury and infection to the patient.
The present invention provides for such an instrument, particularly a phacoemulsification handpiece which represents a unique combination of heretofore separate instruments. The present invention provides for an improved handpiece which facilitates and enhances a surgeon's ability to conduct a multitude of ophthalmic surgical procedures through a single incision and without switching instruments.
SUMMARY OF THE INVENTION
A phacoemulsification handpiece in accordance with the present invention for ophthalmic surgical procedures generally includes a housing, a horn, a transducer disposed in the horn and providing means for generating ultrasonic energy, and a needle, coupled to the horn and providing means for radiating the ultrasonic energy into an eye for fragmenting and/or cutting eye tissue in a conventional fashion, said needle including an tip. In addition, the handpiece of the present invention includes means for delivering an irrigation fluid into the eye and proximate the needle tip during the surgical procedure.
Importantly, the handpiece also includes delivery means, such as a conduit, for delivering a viscous fluid to the eye and proximate the needle tip. The conduit may comprise structure, defining a lumen, disposed longitudinally along the needle and having an outlet for the viscoelastic material proximate the needle tip. Alternatively, the conduit may be integrated into the irrigation fluid pathway such that the two fluids may be combined prior to dispensing thereof.
Thus, the viscous fluid and irrigation fluid may be separately dispensed by means of separate fluid pathways. In other words, in one embodiment of the present of the invention, structure is provided for introducing the viscous material proximate the needle separately from the eye irrigation fluid. This should be contrasted with the first embodiment in which the irrigation fluid and the viscous material may be commingled before introduction approximate the needle.
In conjunction with the delivery means, an accumulator provides means for containing a supply of viscous fluid to be dispensed at the surgical site. Preferably, because of the high viscosity of the material which must flow through the means for delivering same, the accumulator means is disposed a short distance from an outlet for the viscoelastic material. The accumulator means is preferably disposable and removably connected to the housing.
The accumulator preferably includes means for dispensing said viscous fluid upon demand to the delivery means. This feature includes, in part, a flexible diaphragm defining a first chamber filled with viscous fluid and a second chamber filled with pressurized air. The second chamber may be connected to a phacoemulsification machine adapted for providing a constant,
Christ F. Richard
Zaleski Edward R.
Allergan Sales Inc.
Hackler Walter A.
Mendez Manuel
LandOfFree
Method for delivering viscoelastic material to an eye does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for delivering viscoelastic material to an eye, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for delivering viscoelastic material to an eye will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2499874