Method for decomposition of chemical compounds

Hazardous or toxic waste destruction or containment – Containment – Solidification – vitrification – or cementation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S210000

Reexamination Certificate

active

06384292

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates, in general, to decomposition of chemical compounds, and more particularly, but not limited to, an apparatus and method for decomposing a chemical compound into environmentally acceptable materials.
Chemical compounds, in particular, environmentally undesirable materials (which can include hazardous materials), such as halogenated organic compounds or volatile organic compounds, are widely used in many manufacturing areas as reactive agents, solvents, and refrigerants.
As is well known, these environmentally undesirable materials are detrimental to people and the environment by generating harmful substances and/or destroying the stratospheric ozone layer and/or by generating global warming effects. Although these environmentally undesirable materials are widely used in industrial, chemical, automotive, and pharmaceutical industries, it is clear that either the use of these materials must be stopped or severely limited, or the destruction of such materials must be improved in order to comply with increasing regulations.
In many manufacturing situations, it is impossible to stop using many environmentally undesirable materials because no substitute materials which are environmentally acceptable are available at the present time. Thus, an efficient, cost effective method of decomposing environmentally undesirable materials to environmentally acceptable and/or non-hazardous materials is not only necessary to be in compliance with anti-pollution regulations and to protect the environment, but necessary to continue manufacturing many products which require the use of environmentally unacceptable materials.
In the past, there were three prevalent techniques to decompose or alter environmentally undesirable materials to environmentally acceptable materials. The first method involves using a radio frequency (RF) induced plasma reaction to decompose the environmentally undesirable materials. However, a method using solely an RF plasma induced reaction has not been proven to be effective in destroying some environmentally undesirable materials at the desired efficiency levels, nor has it been proven to be cost effective. Currently available units can not destroy halogenated organic compounds with suitable efficiencies. One of the disadvantages of this method is that it is difficult to maintain the plasma in a controlled fashion to destruct environmentally undesirable materials.
A second method of destroying environmentally undesirable materials includes combustion of the environmentally undesirable material. Combustion techniques have extremely low efficiency due to burning of a great amount fuel in the form of hydrogen or hydrocarbons. In addition, combustion can not be performed in a vacuum, thus, vacuum pumps used in manufacturing must be subjected to the environmentally undesirable materials, which increases the maintenance of the vacuum pumps. In some situations, it would be desirable to destroy the environmentally undesirable materials under a vacuum to avoid exposure of the environmentally undesirable materials to vacuum pumps.
A third method of decomposing environmentally undesirable materials involves transforming environmentally undesirable materials into liquid form by cryopumping. The liquid form of the environmentally undesirable materials are recoverable, but still environmentally unsafe and require risk through handling and transportation. Disadvantages of this method are that it is very expensive and maintenance intensive. In addition, the cryopumping apparatus has a large footprint. A large amount of space where the environmentally undesirable materials are produced is not available in many manufacturing situations. In addition, a potentially dangerous situation can arise if cryopumping is utilized where there is a potential to condense compounds which are pyrophoric in condensed form and are still hazardous materials. Due to this danger, cryopumping is not an alternative in many industries.
The efficiency target for destruction of environmentally undesirable material such as halogenated organic compounds is 80% or greater. None of the methods described above provide this efficiency level in a cost effective manner. Thus, it would be desirable to destroy environmentally undesirable material using an efficient, cost effective method.
SUMMARY OF THE INVENTION
An apparatus for and method of decomposition of a chemical compound comprises a reaction chamber having an inlet for providing a flow of a chemical compound into the reaction chamber and an outlet, a member positioned in the reaction chamber, an energy source capable of generating an energy to heat the member, and a conduit physically coupled to the inlet of the reaction chamber for directing the flow of a chemical compound to impinge on the member so that the chemical compound receives heat from the member when the member is heated.


REFERENCES:
patent: 4386258 (1983-05-01), Akashi et al.
patent: 5137701 (1992-08-01), Mundt
patent: 5183647 (1993-02-01), Harada et al.
patent: 5275798 (1994-01-01), Aida
patent: 0577344 (1994-05-01), None
patent: 705011 (1952-03-01), None
patent: 2071970 (1981-09-01), None
patent: 2136258 (1984-09-01), None
patent: 4279179 (1992-05-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for decomposition of chemical compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for decomposition of chemical compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for decomposition of chemical compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2883041

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.