Method for decoloring tetrahydrofuran polymers or copolymers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Treating polymer containing material or treating a solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S486000, C528S501000, C528S50200C, C528S503000, C528S425000

Reexamination Certificate

active

06252039

ABSTRACT:

The present invention relates to a process for decolorizing polymers or copolymers which are obtained by cationic polymerization of tetrahydrofuran (THF) or of THF and alkylene oxide, in the presence or absence of telogens.
It is known that the polymerization of THF in the presence of carboxylic anhydrides and strong acids forms polytetramethylene ether glycol or the corresponding diesters. Polytetramethylene ether glycols (PTHFS) of this type, like the copolymers obtainable by copolymerization of THF with alkylene oxides such as ethylene oxide or propylene oxide, and the copolymers obtainable by copolymerization of THF and alkylene oxides in the presence of telogens such as water, monocarboxylic acids or monohydric or polyhydric alcohols, have molecular weights of >200. They are used, in particular, for the production of polyurethanes.
As comprehensive studies have shown, acid catalysts are suitable for the polymerization of THF on an industrially economical scale, but these have the disadvantage of giving polymers with a yellow to brownish discoloration. The discoloration increases with the polymerization temperature. In addition, the purity of the PTHF also depends on the quality of the THF used.
The technical grade contains small amounts of impurities in a concentration of from 10 to 500 ppm. The chemical nature of these impurities is not known in every respect. Although this THF is of very high purity, it normally has a purity of 99.9%, even traces of impurities cause the abovementioned discoloration on polymerization. In addition, at the same time as the discoloration, a changed reactivity in the preparation of polyesters or polyurethanes from the polytetramethylene ether glycols is observed. These are serious deficiencies, since color and reproducible processing are among the most important properties of a polymer which is to be used industrially.
Numerous methods of treating technical-grade THF to improve the quality have therefore been proposed. Thus, for example, DE-A-2 801 792 describes a process in which THF is treated with bleaching earths before polymerization. Although this gives polymers having an improved color number, this method of treatment cannot in every case be applied reproducibly to every available technical grade of THF.
According to EP-A 61 668, polytetramethylene ether glycol or diesters thereof having a low color number are prepared by subjecting the polymers obtained by cationic polymerization of THF to a treatment with hydrogen in the presence of a hydrogenation catalyst. If the polymerization is carried out using a THF grade as is offered on the market, one is forced to carry out the hydrogenative decolorization at very high hydrogen pressures of, for example, from 50 to 300 bar. This high-pressure process is also expensive in ongoing production since, for example, considerable energy is required for compression of hydrogen.
In many cases, it is even necessary to use expensive noble metal catalysts. Furthermore, the catalysts required frequently have a short life. Similar limitations also apply to the decolorization of the polymers by treatment with activated carbon, as described in U.S. Pat. No. 3,935,252 or U.S. Pat. No. 2,751,419. These processes require a considerable outlay in terms of apparatus and incur additional, not inconsiderable costs for the activated carbon which, furthermore, has only a limited purification capacity.
Since the individual impurities in the THF which lead to discoloration of the end products are not known and, even after analysis, it is scarcely possible to predict whether the quality of the (possibly pretreated) THF used is suitable for giving in-specification polymers in the polymerization, it is extremely difficult in the industrial-scale production of PTHF to reliably avoid reject product.
It is an object of the invention to provide a process which allows the polymers and copolymers of THF to be decolorized in a particularly simple and effective way.
We have found that this object is achieved by a process for decolorizing polymers or copolymers which are obtained by cationic polymerization of tetrahydrofuran or of tetrahydrofuran and alkylene oxide, in the presence or absence of telogens, which comprises
a) first, if desired, removing the low-boiling components by vacuum distillation or extraction, for example with supercritical gases, and
b) heating the remaining polymer or copolymer in the presence of at least one auxiliary selected from the group consisting of solid oxides and/or sheet silicates, preferably selected from the montmorillonite-saponite or palygorskite-sepiolite group, to from 20 to 150° C., preferably from 20 to 70° C.
The novel process enables highly pure PTHF having a low color number to be prepared reliably and reproducibly. The novel process can be applied to all polymers and copolymers of THF which are obtained by cationic polymerization of THF, or by cationic copolymerization of THF and alkylene oxides such as ethylene oxide or propylene oxide, in the presence or absence of telogens.
The polymers and copolymers of THF which can be purified by the process of the present invention include, in particular, polytetramethylene ether glycols, polytetramethylene ether glycol monoethers, polytetramethylene ether glycol monoesters and polytetramethylene ether glycol diesters.
Suitable telogens, ie. substances which cause chain termination in the polymerization, in the preparation of polytetramethylene ether glycol (PTHF) are water and/or 1,4-butanediol. For the preparation of polytetramethylene ether glycol monoesters, C
1
-C
20
-monocarboxylic acids are generally selected as telogens. Preference is given to using C
1
-C
20
-monocarboxylic acids, in particular C
1
-C
4
-monocarboxylic acids and particularly preferably formic acid. It is possible to use either aliphatic or aromatic monocarboxylic acids, depending on the purpose for which the PTHF monocarboxylic ester is to be used. In the preparation of polytetramethylene ether glycol monoethers, the telogens used are generally monohydric C
1
-C
20
-alcohols and particularly preferably monohydric C
1
-C
4
-alcohols, in particular tert-butanol and benzyl alcohol. It is possible to use either aliphatic or aromatic monohydric alcohols depending on the purpose for which the PTHF monoether of a monohydric alcohol is to be used. Both in the preparation of the polytetramethylene ether glycol monoesters and in the preparation of the polytetramethylene ether glycol monoethers, it is possible for water, 1,4-butanediol and/or low molecular weight PTHF to be copolymerized into the PTHF chain. To prepare polytetramethylene glycol diesters, the telogens used are generally C
2
-C
20
-monocarboxylic anhydrides, for example acetic anhydride.
The polymers and copolymers can be prepared from a THF of commercial quality. It is of no importance whether the THF has been prepared from acetylene and formaldehyde, maleic anhydride, alkyl alcohol or butadiene.
For the purposes of the present invention, polymers are polymers and copolymers of tetrahydrofuran having degrees of polymerization of greater than 2.
The novel process enables THF polymers and copolymers which usually have color numbers of from 40 to 150 APHA to be decolorized reliably and effectively, resulting in color numbers of from 10 to 50 APHA. The initially yellowish or brownish polymers and copolymers are decolorized by the process of the present invention to give colorless polymers or copolymers. The determination of the color numbers is described in the standards DIN 53409 and ASTM-D-1209.
The polymers and copolymers to be decolorized according to the present invention can be used directly or dissolved in solvents. The preferred embodiment of the process is the solvent-free method using the upflow mode. In this embodiment, the auxiliary is either present in a fixed bed or is suspended in the polymer to be treated by the process of the present invention.
Solid oxidic auxiliaries which can be used in the process of the present invention are oxides of groups IVa, IIIa and IVb of the Periodic Table of the El

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for decoloring tetrahydrofuran polymers or copolymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for decoloring tetrahydrofuran polymers or copolymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for decoloring tetrahydrofuran polymers or copolymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2547382

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.