Method for customizing optical device configuration after packag

Optical waveguides – With optical coupler – Input/output coupler

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

385 90, G02B 634, G02B 642

Patent

active

057199744

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to the packaging of optical devices, and in particular to the packaging of optical devices which are photosensitive.
2. Related Art
Photosensitive optical devices have been known for a large number of years, and in the case of photosensitive optical fibres, for over twenty years. For example, in 1978 Hill et al reported the optical writing of a Bragg reflection grating into an optical fibre core. Hill K O, Fujii Y, Johnson D C & Kawasaki B S, "Photosensitivity in optical fibre waveguides: Application to reflection filter fabrication", Appl Phys Lett, 32 (10), 647-649, 15 May 1978.
There are many applications of photosensitive optical devices, particularly in the fields of telecommunications and sensing, as demonstrated by the following publications: "Efficient mode conversion in telecommunication fibre using externally written gratings", Electron Lett 26 (16), 1270, 1990. 1169, Fiber and Optic and Laser Sensors VII 1989, pp 98-107. grating in two-mode optical fibre", Electron Lett 25 (12), 797, 1989. intra-core Bragg reflectors", Electron Lett 26 (21), 1829, 1990. semiconductor laser using fibre grating", Electron Lett 27 (13), 1115, 1991. method", G Meltz, W W Morey, and W H Glenn. "Optics Letters, Vol. 14, No. 15, 1st Aug. 1989, pages 823-825.
Davey R P, Smith K, Kashyap R, Armitage J R, "Mode-locked Er fibre laser with wavelength selection by means of a Bragg grating reflector", Electron Lett 27 22), 2087, 1991.
Many of these devices require some form of packaging before they can be used outside of a laboratory, for example for a telecommunications or sensing application. The purpose of the packaging may be to facilitate the input or output of electrical or optical signals to or from the device, and/or may be to provide protection to the device from the operating environment, e.g. from moisture, dust, temperature fluctuations etc.
Hitherto, photosensitive optical devices have been packaged in the same conventional manner as non-photosensitive optical devices. The present invention is based on the realisation that significant advantages can be gained by packaging photosensitive devices in a manner so as to allow optical radiation to reach the photosensitive part of the device after packaging.


SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is provided a method of assembling a package comprising a container having a window substantially transparent to optical frequency electro-magnetic radiation, and a photosensitive optical device, the method comprising the steps of the window in the container and impinge upon a photosensitive part of the optical device, and in the refractive index of the photosensitive part of the optical device.
According to a second aspect of the present invention there is provided a package comprising a container having a window substantially transparent to optical frequency electromagnetic radiation and a photosensitive optical device mounted within said container, so that optical frequency electromagnetic radiation passing through the window in the container may impinge upon a photosensitive part of said optical device, wherein the photosensitive part of the optical device is susceptible to a semi-permanent change in refractive index upon illumination by optical frequency electro-magnetic radiation.
A semi-permanent change in refractive index is one which is not merely transient, but one which is effective for a substantial portion of the lifetime of the optical device. The semi-permanent change in the refractive index of the photosensitive part of the optical device may, however, be reversed and a further, perhaps different, semi-permanent change in the refractive index may be induced.
The ability to define the photosensitive aspects of the optical device's functions after the device has been mounted in a container allows the performance of a package comprising both the container and an optical device to be optimised.
Thus detrimental effects on the performance of t

REFERENCES:
patent: 4119363 (1978-10-01), Camlibel et al.
patent: 4270134 (1981-05-01), Takeda et al.
patent: 4286232 (1981-08-01), Puech et al.
patent: 4646142 (1987-02-01), Levine
patent: 4893901 (1990-01-01), Taumberger
patent: 4906065 (1990-03-01), Taumberger
patent: 5142595 (1992-08-01), Chester
patent: 5218655 (1993-06-01), Mizrahi
patent: 5258626 (1993-11-01), Suzuki et al.
patent: 5287302 (1994-02-01), Brandelik et al.
patent: 5371592 (1994-12-01), Beckwith et al.
Hill et al, "Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication", Applied Physics Letters, vol. 32, No. 10, 15 May 1978, New York US, pp. 647-649.
Hill et al, "Efficient Mode Conversion in Telecommunication Fibre Using Externally Written Gratings", Electronics Letters, vol. 26, No. 16, 2 Aug. 1990, Stevenage, GB, pp. 1270-1272.
Bird et al, "Narrow Line Semiconductor Laser Using Fibre Grating", Electronics Letters, vol. 27, No. 13, 20 Jun. 1991, Stevenage, GB, pp. 1115-1116.
Meltz et al, "Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method", Optics Letters, vol. 14, No. 15, 1 Aug. 1989, Washington US, pp. 823-825.
Kashyap et al, "All-Fibre Narrowband Reflection Gratings at 1500 nm", Electronics Letters, vol. 26, No. 11, 24 May 1990, Stevenage GB, pp. 730-732.
Park et al, "Intermodal Coupler Using Permanently Photoinduced Grating in Two-Mode Optical Fibre", Electronics Letters, vol. 25, No. 12, 8 Jun. 1989, Stevenage GB, pp. 797-799.
Maxwell et al, "UV Written 1.5.mu.m Reflection Filters in Single Mode Planar Silica Guides", Electronics Letters, vol. 28, No. 22, 22 Oct. 1992, Stevenage GB, pp. 2106-2107.
Sugita et al, "Laser-Trimming Adjustment of Waveguide Birefringence in Optical FDM Components", IEEE Journal on Selected Areas in Communication, vol. 8, No. 6, Aug. 1990, New York US, pp. 1128-1131.
Patent Abstracts of Japan, vol. 15, No. 446 (P-1274), 13 Nov. 1991 & JP,A,03 186 808 (Hitachi Cable Ltd), 14 Aug. 1991.
Kashyap et al, "Laser-Trimmed Four-Port Bandpass Filter Fabricated in Single-Mode Photosensitive Ge-Doped Planar Waveguide", IEEE Photonics Technology Letters, vol. 5, No. 2, Feb. 1993, New York US, pp. 191-194.
Williams et al, "Broad Bandwidth Highly Reflecting Gratings Formed in Photosensitive Boron Codoped Fibres", delivered orally to ECOC '92 (European Conference for Optical Communications) on Sep. 27, 1992 in Berlin, pp. 1-4.
"All-fibre Narrowband Reflection Gratings at 1500 nm", Electronics Letters, 24 May 1990, vol. 26, No. 11, pp. 729-731.
"Phase-Shifted Moire Grating Fibre Resonators", Electronics Letters, 4 Jan. 1990, vol. 26, No. 1, pp. 10-12.
"Formation of Moire Grating in Core of Germanosilicate Fibre By Transverse Holographic Double Exposure Method", Electronics Letters, 10 Oct. 1991, vol. 27, No. 21, pp. 1945-1947.
Mollenauer et al, "Wavelength Division Multiplexing With Solitons in Ultra-Long Distance Transmission Using Lumped Amplifiers", Journal of Lightwave Technology, vol. 9, No. 3, Mar. 1991, pp. 362-367.
Evangelides, Jr., et al, "Polarization Multiplexing with Solitons", Journal of Lightwave Technology, vol. 10, No. 1, Jan. 1992, pp. 28-35.
Wright et al, "Constraints on the Design of Long-Haul Soliton Systems", Nonlinear Guided Wave Phenomena, Sep. 2-4, 1991, Cambridge, UK, pp. 6-9.
"Mode-Locked Erbium Laser With Wavelength Selection By Means of Fibre Bragg Grating Reflector", Electronics Letters, 24 Oct. 1991, vol. 27, No. 22, pp. 2087-2088.
Kashyap, "Photosensitive Phenomenon in Optical Fibres", Paper Presented at the SPIE Conference on Emerging Optoelectronic Technologies, Bangalore, India, 18-20 Dec., 1991, SPIE 1622, pp. 1-15.
"Demonstration of Error-Free Soliton Transmission at 2.5 Gbit/s Over More Than 14000 km", Electronics Letters, 24 Oct. 1991, vol. 27, No. 22, pp. 2055-2056.
Mollenauer et al, "Demonstration of Error-Free Soliton Transmission Over More that 15000 km AT 5 Gbit/s, Single-Channel, and Over More Than 11000 km AT 10 Gbit/s in Two-Channel WDM", Electronics Letters, 9

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for customizing optical device configuration after packag does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for customizing optical device configuration after packag, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for customizing optical device configuration after packag will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1790723

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.