Method for creating a billet for molding a part

Plastic and nonmetallic article shaping or treating: processes – With measuring – testing – or inspecting – Positioning of a mold part to form a cavity or controlling...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S040600, C264S040700, C264S142000, C264S148000

Reexamination Certificate

active

06190586

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a system and method for molding parts, and more particularly, a system and method for molding parts from contaminated molding materials using a single thermal heat rise.
2. Description of Related Art
In the field of thermoplastic molding, it is common to mold parts using either an injection or compression molding process. Due to the size of the orifices used in the injection molding equipment, it is often difficult to injection mold with reinforcing fibers, such as glass fibers, having a length over one-eighth inch because such fibers are not easily injected into or conveyed through the injection mold equipment. In addition, it is difficult to use contaminated molding materials such as those collected in plastics recycling programs unless they have been substantially cleaned, processed and put into a usable form and size prior to being used in the injection molding equipment. Such cleaning and processing are expensive and can substantially increase the cost of using the contaminated materials, thereby making them economically impractical.
Another problem with the thermoplastic processes of the past is that the thermoplastics become degraded and lose, for example, their strength when exposed to multiple heat rises.
In general, there are two basic types of compression molding processes which may be used for molding thermoplastics. First, a sheet molding process involves placing a reinforcement, such as a glass mat, between sandwiching layers of a thermoplastic and heating the materials to produce a single sheet of material. The single sheet of material is then cut to the desired size and then reheated to molding temperature before being placed in a compression molding press. This process has the disadvantage of higher cost because of the apparatus required, the material handling costs incurred in making the sheet, handling and cutting the sheet, and the like. The material used to make the sheet is also subject to three thermodynamic cycles, a first cycle when the thermoplastic sheet is formed, a second cycle when the thermoplastic sheets and glass mat are molded together, and a third cycle when the resulting sheet is heated to molten temperature prior to molding the part.
The second form of thermoplastic compression is bulk molding compounds by producing a billet of molten material that is placed into a compression molding press which molds the molten material into a part. Effectively placing and distributing long reinforcing fibers in the billet has heretofore required complex machinery. For example, U.S. Pat. No. 5,165,941 issued to Ronald C. Hawley on Nov. 24, 1992, discloses an extruder apparatus and process for compounding thermoplastic resin and fibers. The Hawley extruder includes an apparatus for compounding thermoplastic resin and reinforcing fibers incorporating a resin extruder in which thermoplastic resin pellets are melted in a second, compounding, extruder in which the molten thermoplastic resin is mixed in intimate contact with long reinforcing fibers. The melted thermoplastic resin is not fed into the device with the fibers, but rather is introduced into the compounding extruder at a point downstream of the inlet point for reinforcing fibers, so that the fibers are mechanically worked and heated before coming into contact with heated, molten thermoplastic resins.
The Hawley device generally suffers from complexity that raises the investment and maintenance costs.
The compression molding of products using polymeric material and glass fibers has traditionally produced a material referred to as fiber glass reinforced plastic. This material exhibits characteristics better than the reinforced plastics, but does not exhibit strength, elasticity or impact resistance comparable to thermoplastic materials which are specifically designed to exhibit these characteristics. Most fiberglass reinforced plastic currently in the market is thermoset and is essentially a solidified mixture of fiber glass and plastic without benefit of chemical bonding or specific methods of enhancing polymer entrapment of the glass fibers because the glass fibers are merely immobilized in the resin in which it is embodied.
In addition, thermoset materials are generally not recyclable other than as filler materials, while thermoplastic materials can be remelted and remolded.
In the field of molded parts, many products are currently made from a variety of materials using moldable plastic. In the sporting goods field for example, bicycles, basketball backboards, toy vehicles and the like are commonly produced using multiple plastic materials. Compression molding has been a common method for producing basketball backboards and related parts of basketball goal assemblies, such as the support pull for the basketball backboard for many years. Heretofore, compression molding of basketball backboards and related parts has typically been limited to thermoset materials, which is characterized by placement of a cold charge in a compression mold. Thermoset process materials have certain drawbacks, including the fact that these material are generally not recyclable other than as filler materials. In general, there are two basic types of compression molding processes which may be used for molding thermoplastics. The following description of these two processes outline some of the difficulties that have prevented use of compression molding thermoplastics in the basketball goal assembly field.
The first type is a sheet molding process that involves a reinforcement, such as a glass mat, between sandwiching layers of a thermoplastic and heating the materials to produce a single sheet of material. The single sheet of material is then cut to the desired size and then reheated to molding temperature before being placed in a compression molding press. This process has the disadvantage of higher cost because of the apparatus required, the material handling cost incurred in making the sheet, handling and cutting the sheet, and the like. The material used to make the sheet is also subject to three thermodynamic cycles, a first cycle when the thermoplastic sheet is formed, a second cycle when the thermoplastic sheets and glass mat are molded together, and a third cycle when the resulting sheet is heated to molted temperature before molding the part.
A second form of thermoplastic compression is bulk molding compounds by producing a billet of molten material that is placed into a compression molding press which molds the molten material into a part. Effectively, placing and distributing long reinforcing fibers in the billet has heretofore required complex machinery as discussed in detail in parent application Ser. No. 08/220,906 now issued as U.S. Pat. No. 5,591,384.
In addition, in recent years it has been increasingly common to provide graphics on the front face of molded parts, including the backboard, for a variety of reasons, such as aesthetic appeal to the consumer, product and source identification, and the like. However, the only commercially acceptable method of applying graphics have been silk-screened with inks or by applying decals.
Silk-screening is time consuming and tends to fade after prolonged exposure to sunlight and the elements. Decals are also expensive and can peel off after time.
An example of a prior art basketball backboard with silk-screen graphics is a backboard sold as “ShurShot”. The silk-screen ShurShot backboard is believed to be about 48 inches across and mates a structurally foam polystyrene molded in a multiple-port injection process. The backboard is molded in the natural color of polystyrene, which is milky white. The entire ShurShot backboard is subsequently spray painted both to seal the polystyrene and to protect the backboard from ultraviolet radiation. Finally, graphics are silk-screened on the front face of the backboard.
In some prior art applications, a graphics display was printed on a styrene sheet and laid by hand into a mold for forming the backboard. Alignment of the sheet was accomplished by align

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for creating a billet for molding a part does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for creating a billet for molding a part, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for creating a billet for molding a part will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2588802

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.