Method for correcting the vehicle G sensor output value and...

Measuring and testing – Simulating operating condition – Marine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06253602

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a method for correcting the G sensor output value and a method for detecting G sensor failure for a G sensor equipped on a vehicle.
A zero point of G sensor is set with a presumption that the vehicle is in a horizontal condition and is not subject to different slopes of the road on which the vehicle is driving. Accordingly, when the vehicle is on a decline, the force sensed by the G sensor appears more to the deceleration than the actual G. This over-effectuates antilock brake control, which tends to cause malfunctioning of traction control. On the other hand, when the vehicle is on an incline, this under-effectuates antilock brake control, and the traction control does not function. In addition, the antilock brake control and the traction control are set to avoid any malfunctioning, which prevents precise brake control fully utilizing a G sensor.
Further, even if the vehicle is in the same acceleration/deceleration, as in
FIG. 6
, the G sensor can output different values under various conditions. For instance, the G sensor output value may be different depending upon the voltage value of the source voltage applied to the G sensor or the output value may be different depending on the mounting condition of the G sensor.
OBJECTS OF THE INVENTION
An object of this invention is to provide an effective use of a G sensor for the vehicle.
Another object of this invention is to correct the zero point of the G sensor based on the road conditions.
A further object of this invention is to determine the acceleration/deceleration of the vehicle utilizing the G sensor. A still further object of this invention is to detect G sensor failures.
This invention is a method for correcting a G sensor output value for a vehicle, the vehicle including a G sensor, a wheel speed sensor determining a wheel rotational speed, and an electronic control device receiving signals from the G sensor and wheel speed sensor and computing therefrom, wherein the method comprises the steps of: determining the zero point of the G sensor from wheel acceleration/deceleration and an output value of the G sensor at every predetermined time and determining the current zero point of the G sensor based on the zero point of the G sensor determined prior to the predetermined time.
This invention further is a method for correcting the G sensor output value as above, wherein the method further comprises a step of determining the current zero point of the G sensor from the zero point of the G sensor determined last and the zero point of the G sensor determined prior to said predetermined time.
This invention still further is a method for correcting the G sensor value as above, wherein the method further comprises a step of determining the zero point of G sensor by applying a wheel acceleration/deceleration, and a G sensor output value in the formula, i.e., Zero Point of G Sensor=(Wheel Acceleration/Deceleration)/Slope Coefficient+G Sensor Output Value.
This invention still further is a method for correcting the G sensor output value as above, wherein the method further comprises a step of determining the zero point of the G sensor in case of the difference between a wheel with the maximum wheel speed and a wheel with the minimum wheel speed being less than a predetermined value.
This invention still further is a method for correcting the G sensor output value as above, wherein the G sensor output value is an average value determined within a predetermined short period of time and the wheel acceleration is the average wheel acceleration within the predetermined short period of time.
This invention still further is a method for determining acceleration/deceleration of a vehicle, which vehicle includes a G sensor, a wheel speed sensor determining wheel rotational speed, and an electronic control device receiving signals from the G sensor and wheel speed sensor and performing calculations therewith, the method comprising the steps of: determining wheel acceleration/deceleration and the G sensor output value at every predetermined interval, determining the differences of the wheel acceleration before and after the predetermined interval and the differences of the G sensor output value, determining the slope coefficient for the G sensor based on the ratio of the differences, and determining the vehicle acceleration/deceleration from the G sensor output value as modified by the slope coefficient.
This invention still further is a method for determining acceleration/deceleration of a vehicle as above, wherein the method further comprises the steps of: determining the maximum wheel speed and minimum wheel speed at each vehicle wheel and determining the slope coefficient of the G sensor in case that the speed difference between the maximum and minimum wheel speeds is less than a predetermined value.
This invention still further is a method for determining acceleration/deceleration of a vehicle as above wherein the G sensor output value is an average value determined within the predetermined interval.
This invention still further is a method for determining acceleration/deceleration of a vehicle as above, wherein the method further comprises a step of determining a slope coefficient in case that the G sensor output value before and after the predetermined interval or the absolute value of the wheel acceleration/deceleration difference is larger than a predetermined value.
This invention still further is a method for detecting the G sensor failure for a vehicle, which vehicle includes a G sensor, a wheel sensor determining wheel rotational speed, and an electronic control device receiving signals from the G sensor and wheel speed sensor and performing calculations therewith, wherein said method comprises the steps of: determining a wheel acceleration/deceleration and a G sensor output value at every predetermined interval, determining the differences of the wheel acceleration/deceleration before and after the predetermined interval, determining the differences of the G sensor output value, determining the slope coefficient for the G sensor based on the ratio of the differences, and detecting G sensor failure when the slope coefficient is determined to be outside of a predetermined value range.
This invention yet further is a method for detecting the G sensor failure for a vehicle, which vehicle includes a G sensor, a wheel speed sensor determining wheel rotational speed, and an electronic control device receiving signals from the G sensor and wheel speed sensor and conducting a computation, wherein the method comprises the steps of: determining a value at a zero point of the G sensor by a low pass filter when the value of the zero point of G sensor is approximately same as an absolute value determined by the G sensor and a vehicle speed is larger than a predetermined value and detecting the G sensor failure in case of the value determined by the low pass filter is not within a predetermined value range.


REFERENCES:
patent: 5307274 (1994-04-01), Takata et al.
patent: 5526263 (1996-06-01), Tanaka et al.
patent: 5570288 (1996-10-01), Badenoch et al.
patent: 5696677 (1997-12-01), Leaphart et al.
patent: 5857160 (1999-01-01), Dickinson et al.
patent: 5895433 (1999-04-01), Chen et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for correcting the vehicle G sensor output value and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for correcting the vehicle G sensor output value and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for correcting the vehicle G sensor output value and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2541741

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.