Colloid systems and wetting agents; subcombinations thereof; pro – Continuous or semicontinuous solid phase – The solid phase contains organic material
Reexamination Certificate
1997-12-19
2001-05-29
Lovering, Richard D. (Department: 1712)
Colloid systems and wetting agents; subcombinations thereof; pro
Continuous or semicontinuous solid phase
The solid phase contains organic material
C166S270000, C166S308400, C252S077000, C507S129000, C507S130000, C507S132000, C507S240000, C507S245000, C507S922000, C510S433000, C510S504000, C554S055000, C564S301000, C564S511000
Reexamination Certificate
active
06239183
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to methods and agents for modifying aqueous fluids and, in particular, to modifying the rheological behavior of aqueous fluids used in well drilling and similar subterranean operations.
2. Background of the Art
Fluids are used in well drilling operations, for example, to cool and lubricate the drilling bit, to carry away drilled solids and other debris, to suspend drilled cuttings and other debris when the fluid column is static, to control subsurface pressure, to prevent squeezing or caving of formations, to suspend propping agents, and to minimize damage to any potential production zone. In hydraulic operations fluids are used to transfer pressure from one location to another.
Drilling fluids and hydraulic fluids can be water based or oil based. Typically, water based drilling and hydraulic fluids can include one or more aqueous fluid thickening agents, lubricants, and corrosion inhibitors. The aqueous fluid can be fresh water or brine, and can include aqueous solutions of acids, alkali, lower alkanols (methanol, ethanol, and propanol), glycols, and the like, provided that the water miscible liquid does not adversely affect the viscoelastic properties of the aqueous fluid. Also included are emulsions of immiscible liquids in water and aqueous slurries of solid particulates such as clay.
Viscoelasticity is a desirable rheological feature in drilling and hydraulic fluids which can be provided by fluid modifying agents such as polymeric agents and surfactant gelling agents. Viscoelastic fluids are those in which the application of stress gives rise to a strain that approaches its equilibrium value relatively slowly. Viscoelasticity manifests itself in shear rate thinning behavior. For example, when such a fluid is passed through a pump or is in the vicinity of a rotating drill bit, the fluid exhibits low viscosity. When the shearing force is abated the fluid returns to its more viscous condition.
Another function of fluid modifying agents in oil drilling applications is permeability modification. Secondary recovery of oil from reservoirs involves supplementing by artificial means the natural energy inherent in the reservoir to recover the oil. For example when the oil is stored in porous rock it is often recovered by driving pressurized fluid, such as brine, through one or more drill holes to force the oil to a well bore from which it can be recovered. However, rock often has areas of high and low permeability. The brine will finger its way through the high permeability areas leaving oil in the low permeability areas.
Various methods have been employed to solve this problem. For example, U.S. Pat. No. 5,101,903 discloses a method for reducing the permeability of the more permeable zone of an underground formation having nonuniform permeability. The method comprises injecting into the formation a blend of surfactant and an alcohol, the blend being introduced in an amount effective to reduce the permeability of the more permeable zone of the formation. The preferred surfactant is an amine oxide such as dimethyltallowamine oxide delivered in water. A disclosed alcohol is isopropanol. The method may include the further step of injecting an alcohol slug following injection of the surfactant and alcohol blend.
U.S. Pat. No. 4,745,976 discloses a method for partially or completely blocking the high permeability regions of a reservoir. The technique is based upon the ability to induce phase changes in surfactant solutions by changing counterions or by adding small quantities of different surfactants. An aqueous solution of an ionic surfactant may have a viscosity only slightly different from brine but an increase in the salt concentration or addition of a multivalent counterion can cause the surfactant to form a solid precipitate or form a gel-like structure of high viscosity. In the method of U.S. Pat. No. 4,745,976, a first surfactant solution is injected into the formation followed by a water-soluble spacer fluid followed by a second surfactant solution. In situ mixing of the two surfactant solutions is affected by the tendency of different surfactant types to travel at different velocities through the reservoir. The compositions of the first and second surfactants solutions are chosen so that upon mixing, a precipitated or gel-like structure will form blocking the high permeability zone of the reservoir.
SUMMARY OF THE INVENTION
In accordance with this invention, the rheology of an aqueous fluid is modified by the method which comprises adding to an aqueous fluid an amount of gelling agent sufficient to form a viscoelastic fluid, the gelling agent being selected from the group consisting of:
i) an amidoamine oxide of the general formula
wherein R
1
is a saturated or unsaturated, straight or branched chain aliphatic group of from about 7 to about 30 carbon atoms, and
ii) an ammonium salt obtained from the reaction of a monoamine or diamine possessing at least one secondary or tertiary amine group with the amine nitrogen directly bonded to a saturated or unsaturated, straight or branched chain aliphatic group of from about 12 to about 30 carbon atoms and an aromatic dicarboxylic acid.
The gelling agents employed in the foregoing method advantageously provide clear gels which do not undergo phase separation over extended periods of time and exhibit high heat stability.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
A viscoelastic fluid especially useful in underground applications can be obtained by adding one or more gelling agent such as described below, optionally with an alcohol, to an aqueous fluid. The concentration of gelling agent in the aqueous fluid can generally range from about 0.5% to about 10% by weight, preferably from about 2% to about 8% by weight, and more preferably from about 4% to about 6% by weight. The aqueous fluid can include inorganic salts and various additives as described hereinbelow. Such a solution is advantageously injected into, for example, an underground system for use in drilling, hydraulic fracturing, for permeability modification of underground formations, and for uses such as gravel packing, and cementing.
The gelling agents disclosed and described herein are surfactants which can be added singly or in combination to the aqueous fluid. Optionally, the gelling agents can be absorbed onto the surface of non-reactive dispersible solids to be used in the form of a flowable powder which, when added to water or aqueous brine, imparts desired viscosity or rheological characteristics. Such non-reactive dispersible solids can include, for example, silica, silicates, alumina, aluminates, silicoaluminates, salts of alkali or alkaline earth metals, carbon black, borax, cellulose, hydroxycellulose, hydroxyethyl cellulose, and the like. The particle size of the solid can range from relatively large particles such as silica sand, to finely ground powder depending on the particular application for the fluid modifying agent. As those skilled in the art will appreciate, particle size is essentially irrelevant where the particles of the solid are soluble.
In one embodiment the gelling agent is an amidoamine oxide having the structure
wherein R
1
is a saturated or unsaturated, straight or branched chain aliphatic group of from about 7 to about 30 carbon atoms, preferably from about 17 to about 21 carbon atoms. More preferably, R
1
is a fatty aliphatic derived from tallow having an iodine value of from about 40 to about 65. R
1
may be restricted to a single chain length or may be of mixed chain length such as those groups derived from natural fats and oils or petroleum stocks. Preferred are tallow alkyl, hardened tallow alkyl, rapeseed alkyl, hardened rapeseed alkyl, coco alkyl, oleyl, or soya alkyl. R
2
is a divalent alkylene group of from 2 to about 6 carbon atoms, preferably, of 2 to 4 carbon atoms and more preferably of 3 carbon atoms. R
3
and R
4
are the same or different and are selected from alkyl or hydroxyalkyl groups of from 1 to about 4 carbon atoms and are preferably h
Dobson Randy E.
Doyle Andress K.
Farmer Robert F.
Gadberry James F.
Hoey Michael D.
Akzo Nobel nv
Dilworth & Barrese LLP
Lovering Richard D.
LandOfFree
Method for controlling the rheology of an aqueous fluid and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for controlling the rheology of an aqueous fluid and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for controlling the rheology of an aqueous fluid and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2532259