Marine propulsion – Engine – motor – or transmission control means – For engine speed
Reexamination Certificate
2001-04-06
2002-11-26
Sotelo, Jesus D. (Department: 3617)
Marine propulsion
Engine, motor, or transmission control means
For engine speed
C440S001000
Reexamination Certificate
active
06485341
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is generally related to a speed control method for a vehicle and, more particularly, to a method for maintaining an average speed of a marine vessel during a preselected period of time such as the course followed by a marine vessel during a water sport competition.
2. Description of the Prior Art
Many different types of speed control methods are known to those skilled in the art. U.S. Pat. No. 6,109,986, which issued to Gaynor et al on Aug. 29, 2000, discloses an idle speed control system for a marine propulsion system. The idle speed control system controls the amount of fuel injected into the combustion chamber of an engine cylinder as a function of the error between a selected target speed and an actual speed. The speed can either be an engine speed, measured in revolutions per minute, or it can be boat speed, measured in nautical miles per mile or kilometers per hour. By comparing target speed to actual speed, the control system selects an appropriate pulse width for the injection of fuel into the combustion chamber and regulates the speed by increasing or decreasing the pulse width.
U.S. Pat. No. 5,765,528, which issued to Kamimaru on Jun. 16, 1998, describes an idle speed control system for automotive internal combustion engines. During idling of an internal combustion engine, when there is a difference between an actual engine speed and a target idle speed which is preset in accordance with an engine load, the opening and closing timings of an intake/exhaust valve of the engine is changed in accordance with the difference between the actual engine speed and the target idle speed to change an intake air flow sucked into the engine. Therefore, it is not required to provide any apparatus, such ISC valve, provided in conventional systems, and it is possible to quickly adjust the engine speed so as to be equal to the target idle speed.
U.S. Pat. No. 5,362,263, which issued to Petty on Nov. 8, 1994, describes a trolling autopilot. The autopilot is for a vessel and for use in combination with a depth finder having a transducer, including a means for setting and storing a desired characteristic to be followed by the vessel, means for measuring the characteristic to be followed by the vessel, and means for storing a signal generated by the measuring means indicative of the measured characteristic. Once received and stored, the measured characteristic is compared to the selected characteristic. Based upon the comparison between the two characteristics, at least one servo motor is actuated to alter the direction the vessel is traveling. A servo motor may be coupled to the helm or to an outboard motor mounted to the vessel. The speed of the vessel may also be controlled based upon a comparison between a measured value and a selected value.
U.S. Pat. No. 5,364,322, which issued to Fukui on Nov. 15, 1994, describes a control apparatus for a marine engine. The apparatus is capable of effectively suppressing a great variation in the rotational speed of the engine due to a great variation in an intake air pressure particularly when the engine is trolling. In one form, an air/fuel ratio of a mixture supplied to the engine is made constant to maintain engine output power at a constant level. In another form, the intake air pressure, based on which the engine is controlled, is averaged in such a manner as to reduce a variation in the engine rotational speed by using a greater averaging coefficient during trolling than at other times. In a further form, if a variation in the intake air pressure is less than a predetermined value, the intake air pressure is used controlling the engine, whereas if otherwise, another engine operating parameter such as an opening degree of a throttle valve is used instead of the intake air pressure.
U.S. Pat. No. 5,546,188, which issued to Wangler et al on Aug. 13, 1996, describes an intelligent vehicle highway system sensor and method. An object sensor and method using pulsed laser range imaging technology is adapted for determining the velocity and three dimensional profile of a vehicle passing the sensor for classifying the type of vehicle for use in Intelligent Vehicle Highway Systems. A pair of scanned laser beams are provided by splitting a continuously pulsed laser beam from a transmitter and an optical receiver determines the presence of a vehicle in a predetermined zone such as a highway weigh station or toll booth. Range, angle and time data are collected and stored for use in determining the speed of the vehicle passing the sensor and its three dimensional profile. Forward and backward scanned beams are provided using alternate embodiments of a rotation mirror and using two transmitters/receivers in another embodiment. The pulsed energy is sent into two divergent beams, which are received as reflective energy in a receiver. The receiver accepts reflections from the beams and provides inputs for purposes of determining time of flight, and for measuring the time interval between interceptions of the two divergent beams for a given vehicle. An encoder tracks the position of the mirror for providing angle data with associated range measurements. The vehicle speed is calculated for range data collected when the vehicle passes through the forward and backward scanned beams. Three dimensional profiles are compared with preselected vehicle profiles for classifying the vehicle.
U.S. Pat. No. 5,957,992, which issued to Kiyono on Sep. 28, 1999, describes a vehicle cruise control system and method having improved target speed resolution feature. A vehicular constant-speed running system converges a vehicle speed control of a vehicle quickly to a target vehicle speed when the vehicle is set in a cruise control mode. The vehicular constant-speed running system includes a constant-speed running section for controlling a throttle opening independently of an accelerator opening to maintain a vehicle at a target vehicle speed. It is also an initial opening setting section which, at the time of transfer by the constant-speed running section, sets the throttle opening before the transfer of an initial value at the time of the transfer if the throttle opening is in a region which is preset based on either the vehicle speed at the time of the transfer or a parameter correlated with the vehicle speed. If the throttle opening is not in this region, the initial opening setting section sets the same throttle opening to the upper limit and/or the lower limit of that region.
U.S. Pat. No. 5,680,309, which issued to Rauznitz et al on Oct. 21, 1997, describes a control system for automatic resumption of speed control after gear change. The method for automatically resuming vehicle speed control after a gear change of the vehicle's manual transmission is disclosed. The method may be implemented as a subroutine in the vehicle's general control software. After disengagement of the clutch, the subroutine suspends the automatic speed control system and then periodically checks to determine if the driver has shifted gears within a predetermined time period. This determination is made by checking to see if the clutch has once again been engaged with the transmission in gear. If this occurs within the predetermined time period, then the control system automatically resumes the speed control of the engine. The determination of whether the transmission has been placed into another gear is made by an explanation of calculated gear ratios, rather than by the addition of a hardware sensor.
U.S. Pat. No. 5,624,005, which issued to Torii on Apr. 29, 1997, describes a running speed control device for a vehicle. When an “off” state of an idle switch is detected even once after an ignition switch of an internal combustion engine is turned on, a cruise ECU determines that the idle switch is normal, and performs constant-speed cruise control if the start thereof is instructed. Because the constant-speed cruise control is normally instructed while a vehicle is running, if the idle switch is normal, the idle switch
Boatman John R.
Ehlers Jeffery C.
Lanyi William D.
Lemancik Michael J.
Brunswick Corporation
Lanyi William D.
Sotelo Jesus D.
LandOfFree
Method for controlling the average speed of a vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for controlling the average speed of a vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for controlling the average speed of a vehicle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2994277