Method for controlling a valve in a hydraulic braking system

Fluid-pressure and analogous brake systems – Speed-controlled – Having a valve system responsive to a wheel lock signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C303S162000

Reexamination Certificate

active

06361128

ABSTRACT:

TECHNICAL FIELD
The present invention relates to hydraulic systems, and more specifically, to solenoid controlled hydraulic braking systems for automobiles.
BACKGROUND
Hydraulic systems typically are the basis for vehicle braking systems, especially automotive braking systems. The ability of a hydraulic system to convert fluid pressure into linear/mechanical motion, and to allow the source of the hydraulic pressure to be positioned remotely from the cylinders which effect the braking action, is particularly desirable in automotive systems. Such automotive braking systems are hydraulic throughout, consisting of an actuator, such as a brake pedal, a reservoir of fluid responsive to pressure applied by the actuator, such as a master cylinder, and means for converting the hydraulic pressure to the braking force, such as cylinders. Thus, in these standard systems, braking pressure has been achieved mechanically, utilizing the force of the depression of the brake pedal by the driver (usually accompanied by a vacuum boost) that consequently increases the pressure in the master cylinder. The increased pressure in the master cylinder is then transmitted through lines of fluid to the cylinders which operate the calipers or shoes, thereby forcing the calipers and shoes against the rotors or drums, respectively, to slow the automobile.
Motor-based antilock braking systems (“ABS”) are frequently used with standard all hydraulic braking systems in order to prevent vehicle skidding during “panic” braking events. In commonly used motor-based ABS, a motor/piston assembly is used to modulate the fluid pressure to the calipers during ABS braking events to quickly cycle the brakes between apply and release modes. In a typical ABS, a wheel speed sensor senses when individual wheels on a vehicle begin to “lock-up” (i.e. cease rotation) during braking, which is an indication that those vehicle wheels are beginning to skid. Vehicle skidding is undesirable in that the vehicle stopping distance could be lengthened and vehicle control is lessened. Accordingly, in order to minimize skidding, the ABS modulates hydraulic fluid flow to the vehicle wheel brakes that are about to lock up, thereby causing such brakes to alternate between applying braking pressure and releasing braking pressure in a controlled manner at a high rate to optimize tire slip without allowing the wheels to lock-up.
However, during ABS operation, there is an undesirable lag in response time in the braking system due to the back pressure of the hydraulic fluid in the system that is placed on the motor. In other words, the motor does not respond as quickly as desired in resetting to a neutral position or in reversing direction in response to a signal received from the brake control requesting a change in pressure to the calipers. While some of this response lag is caused by the inertia inherently present in the motor itself, most of the problem is attributable to the back pressure of the hydraulic fluid on the internal components of the motor. Thus, motor response and or resetting lag times could be decreased, and overall ABS control improved, if the pressure load on the ABS motor was relieved as the motor is commanded by the controller to go from release to reapply. Also, by closing the solenoid and limiting the pressure to the calipers during transition from apply to release, the motor turn around time could be reduced by deadheading the motor and eliminating pressure overshoot at the wheel brake.
While control improvements such as these are useful in controlling the pressure load on ABS motors in standard all hydraulic systems, there are additional disadvantages of standard systems that are not solved by merely improving hydraulic control. Some of these disadvantages include the large amount of mass and volume that the master cylinder and the hydraulic lines add to the completed automobile. Furthermore, the number of assembly hours that are required to install standard hydraulic braking systems when combined with the large number of parts that these systems generally require, further adds to their expense and undesirability. Other disadvantages of standard hydraulic braking systems is their dependence on vacuum boost to assist in the braking operations due to the advent of vehicles, such as electric cars, which do not produce vacuum as a by-product of the vehicle operation.
Accordingly, there have been recent advances in standard hydraulic braking technology using “brake-by-wire” technology to overcome some of these disadvantages. In particular, a subset of “brake-by-wire” systems known as “dry interface” systems has been found to be particularly useful. In a typical dry interface system, the driver input is transmitted to the system electronically through an electronic controller, rather than mechanically and hydraulically, to the braking devices at each corner. The corner is a term used in the industry to describe all of the equipment that is used at the wheel assembly, including, but not limited to, the braking, suspension, and drive train systems. These new dry interface systems ameliorate several of the aforementioned disadvantages of standard hydraulic braking systems. In particular, dry interface systems improve on standard braking systems in performance, vehicle design, assembly, and repair areas. For example, the elimination of an all-hydraulic braking system means that hydraulic lines are no longer necessary to convey brake fluid from the master cylinder to the corners of the automobile, thereby eliminating a significant amount of mass from the automobile. Furthermore, assembly costs are reduced since dry interface systems consist of individual modules having relatively few separate components. The dry interface modules merely need to be bolted to the automobile and plugged in, in contrast to the significant assembly time required for the installation of standard, fully-hydraulic braking systems. The reliability of the systems is thereby increased accordingly.
While such dry interface systems eliminate many of the hydraulic components of the standard hydraulic systems, it should be noted that these systems are not completely “dry.” Unlike standard hydraulic systems, which utilize vacuum-assisted driver brake pedal force to create the pressure to apply the brakes, the dry interface system utilizes individual motors that drive ballscrew piston assemblies at each corner to create the necessary hydraulic pressure for applying the brake pressure at that corner. Accordingly, while assembly costs are reduced, there is still a lag in ABS braking response time due to the pressure load that is placed on each ballscrew piston motor by the hydraulic back pressure of the system. Thus, as with ABS braking in standard hydraulic braking systems, ABS response times would be greatly improved in dry interface braking systems if the pressure load on the motor could be controlled during ABS apply and reapply modes.
Thus, given the above-noted disadvantages of prior art automobile braking systems, it is desirable to have a hydraulic control system that is highly responsive to driver braking input and that controls pressure load on a motor during ABS braking events to improve the hydraulic system response time.
SUMMARY OF THE INVENTION
The present invention is an improved control for a hydraulic system. While the improved control disclosed herein is useful in many hydraulic system applications, it is particularly useful in automobile braking systems. The improved control of the present invention preferably includes the use of a normally-open solenoid valve that closes when a desired pressure is sensed in the associated hydraulic system. The closing of the normally-open solenoid valve holds the pressure at the wheel brake assembly at a desired level while simultaneously relieving pressure load on the motor being used to create the hydraulic pressure during a release cycle and deadheading the motor on an apply cycle, which may be the ABS motor in standard braking systems or the ballscrew piston motor in dry interface systems. The control of the pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for controlling a valve in a hydraulic braking system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for controlling a valve in a hydraulic braking system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for controlling a valve in a hydraulic braking system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2838708

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.