Method for controlling a cable treating device

Metal working – Method of mechanical manufacture – Electrical device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S03300H, C029S525120, C029S564100, C140S092200

Reexamination Certificate

active

06718624

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a procedure according to a special coiling device and a system.
BACKGROUND OF THE INVENTION
A device for cable preparation in the context of the invention is a device for preparing a cable so that it is altered in its surface or its geometry or in its position relative to the original state. Said device generally has a first cable feed device arranged along the cable feed axis, a cable preparation tool (as a rule, at least one knife, crimping tool or thrust head or the like).Frequently, it has a second cable feed device, the two cable feed devices being capable of moving the cable in at least one first feed direction, frequently also in a direction opposite to this one first feed direction, while the cable preparation tool performs cable preparation actions between the feed movements.
Cable preparation machines are understood essentially as meaning a device for cable preparation which is intended for cutting into and/or stripping the insulation from and/or cutting to length a cable or at least one end of the cable.
The invention is not limited to such a device. It also relates to devices which merely cut through (cutter) or transport (feeder) the cable.
A coiling device is understood as meaning a device for coiling a cable. It has, as a rule, a coiling pan or a coiling plate in which or on which a coil forms and drives the coiling pan or coiling plate by means of a drive. A coiling pan corresponds to a coiling plate having a circumferential wall for laterally supporting a coil. In the following description, the two are to be understood in principle as being interchangeable. Usually, the coiling pans or coiling plates remain locally on the coiling device; in particular embodiments, such coiling pans or coiling plates may also remain connected to the coil for further processing, and they can be used as a transport base in the same way as pallets.
Coiling is understood a meaning the winding of a cable to form a coil. A coil is a cable stored in an approximately annular manner in a plurality of layers. It is generally present in a plurality of layers and has two cable ends (a cable start section and a cable end section), but as a rule no support or coil former. In the context of the invention, a cable is understood as meaning at least one electrical or optical conductor which is provided on the outside with an insulation. Typical cable preparation machines in the context of the invention are so-called “cut and strip” machines or cutters, as launched on the market by the Applicant, for example under the designation CS 9050, CS9100, PS9500 Powerstrip or OC3950.
Typical “cut and strip” machines have drive rollers, drive belts or other drive devices which transport the cable along a first-conveying axis, initially in a transport direction, and then, in the course of the insulation stripping processes, also in a direction opposite to the first transport direction, in the opposite second transport direction, in order to carry out the individual insulation stripping steps—generally at both ends of a cable section.
In the context of a preferred embodiment of the main invention, the purpose of coiling is primarily to form such long cable sections stripped at both ends or only cut off, in order to make them more easily transportable, storable or further processible.
SU-916012B describes a wire coiling machine comprising a coiling pan in which a U-shaped binding band is inserted prior to coiling, in order to bind the prepared coil before it is removed and thus to make it more easily transportable. The wire is fed through a rotating device into the pan. The design is intended as an addition to wire rolling or wire drawing devices in which, owing to the production sequence, only one feed direction occurs in each case.
U.S. Pat. No. 4,372,141 describes another wire coiling device comprising an integrated cutting device for the wire. The feed velocity of the wire is generated by two drive rollers driven by means of a gear. The feed velocity is mechanically synchronized and varies with respect to the coil operation and the cutting operation. The use of this wire coiling device as an addition to a cable insulation stripping device is not envisaged. As in the SU-B, the design operates with only one feed direction for the wire.
Another form of synchronization (cycle synchronization) between the device for cable preparation and the coiling device is indicated in U.S. Pat. No. 4,663,822 of 1987. There, a single, programmable electronic controller controls all drives. A diverter switches the cable path between two cable ducts to two selectable coiling pans. The two coiling pans are driven by a motor via a clutch which can be engaged and released as desired and alternately. The electronic controller detects the cable feed via a length sensor and the position of the cable ducts via a proximity switch. It synchronizes the drives by actuating electropneumatic control pistons. One control piston moves, for example, the cable duct between two positions assigned to the respective coiling pans. Two further control pistons operate the one clutch each between the continuously revolving motor and the coiling pans. A cyclic, synchronized sequence is thus possible provided that there are no slip or feed losses during cable preparation. In the coiling pans themselves, play is possible since the cables are introduced freely. Undesired friction and cable damage cannot be entirely ruled out. The free introduction does not make it possible to achieve exactly reproducible coil shapes.
An additional disk brake likewise controlled by the controller is provided in order to brake a rotating coiling pan as soon as it is no longer driven. This design therefore has only two operating states of the coiling pans, rotating at full speed or braked. An intelligently controlled drive having variable speeds, acceleration moments or variable brake moments or feed reversal is however not provided in spite of the electronic controller.
Apart from this, this design is fairly complicated from the point of view of operation and programming. Thus, the single controller must be operated with all parameters relevant to the result. Reprogramming must take place if peripheral devices (additional devices) are changed. However, even if only operating parameters relating to the main tool or to the feeds are changed, corresponding changes in the operating parameters of the additional devices must be programmed by the operator. This is time-consuming and by no means tolerant of errors. Before a corresponding arrangement is ready for operation, test runs should always be made, in which waste is likely under certain circumstances.
The principle of a central computer for actuating a plurality of devices for cable preparation is also applied in U.S. Pat. No. 5,343,605 of 1994. There, there is a first command bus for the up-circuit device and a second command bus for the “cut and strip” device. One command bus each runs from each of the two devices to the computer and back (status bus). Since the actuation is thus performed only by the computer, its program must always be adapted if a different device is connected.
In comparison, U.S. Pat. No. 4,546,675 describes a complete cable cutting and stripping unit having a connected coiler, the latter winding the cable onto a mandrel which can be lowered. The mandrel is lowered for coil removal. Frictional resistance between the coil and the mandrel may be disadvantageous here, and may in certain circumstances cause damage to the cable.
A support plate is moved up and down along a cable feed nozzle in order to be able to arrange the coil in an orderly fashion in a plurality of layers. A sensor measures the tension in the cable and controls the tensile force on the winding drum as a function of said tension. Thus, this older design is therefore more sensitive than the U.S. Pat. No. 822 with regard to the requirements of a cable during coiling. However, it is always reactive and can thus react only sluggishly to rapid changes in feed, which may lead to bending of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for controlling a cable treating device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for controlling a cable treating device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for controlling a cable treating device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3274499

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.