Wells – Processes – Dissolving or preventing formation of solid oil deposit
Patent
1985-07-11
1987-04-28
Novosad, Stephen J.
Wells
Processes
Dissolving or preventing formation of solid oil deposit
166312, E21B 4325
Patent
active
046606459
DESCRIPTION:
BRIEF SUMMARY
FIELD OF THE INVENTION
This invention relates to a method useful for introduction of an additive into a substantially hydrocarbon liquid. More particularly this invention relates to a method of utilizing a bead containing an additive which is leachable therefrom to introduce the additive in useful amounts into the liquid hydrocarbon.
BACKGROUND OF THE INVENTION
The recovery of oil and gas from underground geological formations is of great importance in modern society which uses vast amounts of fossil fuels for its essential energy. The individual well productivity declines over a period of time because of a number of factors including changes in reservoir fluid characteristics, depletion of reservoir energy, decreasing permeability of the formation to the oil, the gradual dissipation of the expanding pressure transient, contamination of the well bore, reduced permeability of the oil through the region immediately surrounding the well bore and reduction of the internal diameter of the well pipe.
The response to the declining productivity was the development of numerous techniques which has become collectively known as well workover and stimulation. The concept of fracturing or formation breakdown has been recognized to play a very important role in the application of these oil production enhancement techniques including stimulation, acidizing, water injection and cementing of the formation.
Hydraulic fracturing has found wide usage as a well stimulation procedure for creating deep-penetrating fractures (both horizontal and vertical) that provide high capacity channels for flow from deep within the producing formation to the well as well as for overcoming damaged matrix permeability surrounding a wellbore. In order to produce gas or liquids from a well at a higher rate following a hydraulic fracturing treatment, the reservoir must contain enough fluids in place and the formation must not have regions of severe permeability reduction particularly in regions adjacent to the well. Early experimental work in shallow wells demonstrated that a hydraulically formed fracture tends to heal--that is, to lose its fluid carrying capacity after the parting pressure is released--unless the fracture is propped. Typical propping agents for retaining the integrity of the fractures are nutshells, plastic beads, aluminum spacers, glass beads, sand and urea prills.
Proppants thus provide a means for meeting the objective of the fracturing which is to increase the well production by preventing collapse of the formation and resultant decrease in fluid permeability.
Another cause of declining well production is caused by paraffin deposition from the crude oil onto the inner walls of the production tubing and equipment.
Paraffin is a reservoir produced group of straight-chain alkanes that contain more than 15 to more than 80 carbon atoms. The melting point of the paraffin increases as the size of the molecule increases. Paraffin is deposited in the form of crystalline solids which may collect on the interior of the tubing and flowlines, slowly choking off production. Paraffin deposits have also caused the breaking of pump rods. In some cases, paraffin deposits have caused plugging of formations during stimulation treatments. Paraffin has also been blamed for the difficulty in pumping crude oil at cool temperatures.
One method of handling paraffin deposition is to mechanically remove the paraffin. There are several mechanical methods for removing deposited paraffin from tubing, flowlines and pipelines which include rod scrapers, free-floating pistons, etc. The major advantage of mechanically removing paraffin is that positive cleaning is assured, however, it is limited due to time and equipment involved, costly and has the danger and difficulty inherent in retrieving tools lost in the hole during the cleaning operation.
Other methods of cleaning include:
(1) thermal methods, using bottomhole heaters, circulation of hot oil, water or steam, and heat-liberating chemicals; and, chemical including the use of paraffin solvents, dispe
REFERENCES:
patent: 3531409 (1970-09-01), Seffens et al.
patent: 3693720 (1972-09-01), McDougall et al.
McDougall Lee A.
Newlove John C.
Exxon Research & Engineering Co.
Graham R. L.
Novosad Stephen J.
Odar Thomas J.
LandOfFree
Method for controlled introduction of reagent into a liquid does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for controlled introduction of reagent into a liquid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for controlled introduction of reagent into a liquid will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-471429