Method for computing finite-frequency seismic migration...

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S018000

Reexamination Certificate

active

06643590

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the field of geophysical prospecting and, more particularly, to a method for determining travel times and travel time maps for migrating seismic data.
BACKGROUND OF THE INVENTION
In the oil and gas industry, geophysical prospecting techniques are commonly used to aid in the search for and evaluation of subterranean hydrocarbon deposits. Generally, a seismic energy source is used to generate a seismic signal which propagates into the earth and is at least partially reflected by subsurface seismic reflectors (i.e., interfaces between underground formations having different acoustic impedances). The reflections are recorded by seismic detectors located at or near the surface of the earth, in a body of water, or at known depths in boreholes, and the resulting seismic data may be processed to yield information relating to the location of the subsurface reflectors and the physical properties of the subsurface formations.
In one form of geophysical exploration for natural resources, a seismic wavefield is radiated from a source point at or near the surface of the earth. Initially propagating as a spherically expanding wavefront, the radiation insonifies the various earth layers which usually offer an acoustic impedance mismatch at the layer boundaries due to variations in rock density and acoustic velocity. The wavefield is reflected from the respective layer boundaries to return to the surface where the mechanical earth motions due to the reflected wavefield are converted to electrical signals by transducers. The signals which comprise the seismic data, are stored on archival storage media for future processing.
It is the object of seismic studies to produce an image of a volume of subsurface earth formations in a region of geological and/or economic interest. For an isotropic horizontal stratum with constant velocity, the elapsed time between wavefield emission and wavefield reception at a receiver near the source, multiplied by half the average velocity, is the depth of the incident point of the reflected wavefield on the stratum that lies directly beneath the midpoint between the source and receiver.
If a reflector is tilted or the velocity is spatially variable, that simple relationship no longer holds; the incident point is shifted laterally up-dip relative to the source/receiver midpoint. Proper mapping of dipping or tilted reflectors, requires migration of the wavefields originating from those dipping strata.
Complex subsurface conditions preclude simple stacking of seismic records. Complex subsurface conditions scatter seismic waves in many directions. Simple stacking may position subsurface features in the wrong locations. Migration of seismic records can provide more accurate location of subsurface features. Migration involves geometric repositioning of return signals to show an event (layer boundary or other structure) in its proper location. A travel time map is an integral part of prestack migration processing. One well-known migration technique is Kirchhoff depth migration.
For prestack depth imaging, Kirchhoff migration is often chosen for its low computational cost relative to other methods. Kirchhoff migration requires use of wavefront travel time generators of any one of several well-known types that are based on ray tracing. Ray-tracing methods are useful in complex geological structures. Ray-traced travel times permit use of both first-arrival data as well as maximum-energy arrivals, which latter data produce superior imagery. However those methods are very slow and greedy of computer processing time.
The computation of wavefield travel times at selected output points is a key element in successful Kirchhoff depth migration of seismic data. For complex geology, wavefield travel times to the output points are generated by ray tracing from the source. Ray-traced travel-time generation methods produce travel times for all wavefront arrivals at an output point.
One method is taught by U.S. Pat. No. 5,229,938, issued Jul. 20, 1993 to Shein-Shen Wang et al. Here is taught a method for obtaining two-way travel times for source and receiver pairs that includes the steps of determining a set of one way travel times for each source to a plurality of image points and a set of one way travel times for each receiver to a plurality of image points. Ray sets are generated for both sources and receivers. Travel times from a source position.to image points are computed by two-point interpolation using the ray sets. Two-way travel time is computed by summing two sets, one set each for the source and receiver positions. A two-way travel time set is obtained for a particular source and receiver combination for all imaging points.
Eikonal (finite difference) travel time generators are very fast and do not produce shadow zones. Finite difference travel time generators will always pick the first arrival travel times whereas with ray-traced travel-time generators, the desired portion of the wave front must specifically be selected.
A well-known finite-difference travel time generator is disclosed in a paper published in the Bulletin of the Seismological Society of America, v. 78, n. 6, December 1988, pp 2062-2076, by John Vidale. Here the travel times of the first arriving seismic waves through any velocity structure can be rapidly computed on a multi-dimensional grid by finite-difference point-to-point extrapolation. Wavefronts are tracked instead of rays. Refracted waves are properly treated and shadow zones are filled with the appropriate wavefront segments. This scheme is very fast and is useful in tomographic inversion and Kirchhoff migration in geologic section characterized by smooth lateral velocity gradients.
Travel times, from which a travel time map or travel time table may be made, can be directly computed by ray tracing through a specified velocity model. A velocity model may be provided by well-known methods. A velocity model is generally considered to be a representation of the seismic wavefield velocity structure of the earth. The velocity model is a 2D or 3D array describing the distribution of velocities on a grid within the area or volume of interest. The grid may be a Cartesian (x-y-z) grid, although spherical, polyhedral or other grids may also be used. Determining a suitable velocity model for a given seismic data volume or earth structure is well known in the art and will not be discussed here in detail.
A bundle of rays emerging from a source location at the surface (of an earth velocity model) can be propagated down into the earth velocity model and traced through the subsurface while accounting for ray bending caused by changes in velocity gradient and refraction at layer boundaries with velocity contrast. Reflections points along each of the raypaths are identified as the intersection points of the rays with the layer boundaries. The travel time from the source location at the surface to a reflection point in the subsurface is then calculated by integrating the elements of distance along the raypath divided by the velocity associated with that element. By applying reciprocity, the travel time from a receiver location at the surface to a reflection point in the subsurface can be computed in the same manner. Finally, for a given source-receiver pair at the surface and a reflection point in the subsurface, the total travel time is computed by adding the travel time from the source to the reflection point the travel time from the reflection point to the receiver.
FIG. 1A
is an example of a velocity model with one set of 4 raypath segments for a simple 3-layer earth model. Each of the 3 layers, V
1
, V
2
and V
3
have velocities such that the velocity of layer V
1
is different from V
2
and V
2
is different from V
3
. A source location S at the earth surface from which seismic energy as a ray segment (represented by an arrow) propagates through the upper model layer V
1
. The next ray segment then takes a different path as it traverses the next earth layer V
2
. The total travel time from the source S to the ref

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for computing finite-frequency seismic migration... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for computing finite-frequency seismic migration..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for computing finite-frequency seismic migration... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3119645

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.