Method for commutating a brushless motor and power supply for a

Electricity: motive power systems – Switched reluctance motor commutation control

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

318138, 318439, 318727, 318801, 318812, 318799, 318800, H02K 2300

Patent

active

060284064

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

The invention concerns a method for commutating a brushless motor, supplied with electrical energy from a DC intermediary circuit via a multi-phase inverter, by which a first current value and a second current value are determined, and the duration of a commutation interval is set in dependence of these current values. Further, the invention concerns a power supply for a brushless motor, the motor being connected with a DC intermediary circuit via an inverter, comprising a control unit with an input connected to the DC intermediary circuit.
With inverter controlled motors the individual motor phases must be turned on with optimum timing. Turn on must take place in correspondence with the counter voltage or counter-electromotive force (back-EMF) produced by the rotor, so that the motor does not get out of phase or timing, i.e. jumps, or even stops. This is especially important for motors, the rotors of which are equipped with permanent magnets, as here there are no possibilities for changing the flux produced by the rotor. Thus it is known to measure the induced counter-electromotive force in the windings and to use it to control the speed and to determine the moment of commutation. Hereby a measurement of the rotor position and speed can be avoided. This sensorless control is effective, but considerable costs are implied in realising it. Normally three voltage sensors (or a number corresponding to the number of phases) are required in the motor cables, which will increase the costs for the production and operation of such a motor due to the plurality of components.
Thus, it has become widely used to avoid the position and speed feed-back, and to measure the current in the intermediary circuit instead. The motor can also be controlled by means of this information. This principle can be used for both AC and three-phase current synchronous motors, and for brushless DC motors as well.
With brushless DC motors it is known to change the commutation time dynamically as a function of the current in the intermediary circuit. For this purpose the current is measured and converted to a processable parameter. This parameter is compared with a predetermined reference parameter. In dependence of the result of this comparison, the commutation interval is either kept constant or reduced or prolonged. Here commutation interval means the time between the individual commutations.
U.S. Pat. No. 5,420,492 describes a design, in which the commutation frequency, i.e. the frequency of commutations, is changed in dependence of the current over time, i.e. in dependence of the current waveshape profile. This current waveshape profile is compared with a pre-set profile. The contour of the current profile depends on whether the commutation time was correct, too early or too late. In the solution revealed in U.S. Pat. No. 5,420,492 the slope of the current is determined. When the moment of commutation occurs too early, i.e. is ahead of the rotor, the slope will be too flat. When the commutation occurs too late, the slope will be too steep. If the waveshape profile is not correct, the commutation interval is either reduced or prolonged, and a new test is made, until the correct profile, and thus the correct commutation interval, has been set. This is done via a change of the commutation frequency.
However, it is difficult to determine the optimum profile of the current, i.e. the optimum slope or the optimum relation between the two current values. The values can be determined empirically for the unloaded motor and then be taken from a look-up table during the operation. For a loaded motor, however, this determination is relatively difficult, as the kind and size of the load is not known. In dynamic systems with heavily varying loads, a correspondingly large number of reference parameters would be necessary.
This is for instance the case, when the motor is driving a compressor. In this case it is difficult to obtain an optimum control of the operation with the known method.
Piston compressors are for example

REFERENCES:
patent: 5465210 (1995-11-01), Walenty
patent: 5600575 (1997-02-01), Anticole

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for commutating a brushless motor and power supply for a does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for commutating a brushless motor and power supply for a , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for commutating a brushless motor and power supply for a will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-523071

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.