Method for commercial preparation of preferred isomeric...

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06822104

ABSTRACT:

FIELD OF INVENTION
This invention relates to an improved process for preparation of conjugated fatty acids from materials rich in fatty acids containing interrupted diene, triene and polyene systems. In a preferred embodiment the reaction produces approximately equal amounts of the conjugated linoleic acid isomers 9Z,11E-octadecadienoic acid and 10E,12Z-octadecadienoic acid from linoleic acid. The reaction is unique in that the reaction proceeds rapidly at temperatures as low as 90° C. The process by-product stream is usable directly as a fertilizer that limits waste disposal costs.
Interrupted dienes moieties of fatty acids and esters thereof may be converted to conjugated dienes, and higher polymers may also be conjugated. For examples, literature reports the synthesis of conjugated forms of linoleic acid, linolenic acid and arachidonic acid using alkali catalysts. Of the conjugated fatty acids that have been prepared, conjugated forms of linoleic acid are the most investigated. Conjugated linoleic acid or CLA is the trivial name given to a series of eighteen carbon diene fatty acids with conjugated double bonds. Applications of, and uses for, conjugated linoleic acids vary from treatment of medical conditions such as anorexia (U.S. Pat. No. 5,430,066) and low immunity (U.S. Pat. No. 5,674,901) to applications in the field of dietetics, where CLA has been reported to reduce body fat (U.S. Pat. No. 5,554,646) and to inclusion in cosmetic formulae (U.S. Pat. No. 4,393,043).
Conjugated fatty acids, specifically CLA shows similar activity in veterinary applications. In addition, CLA has proven effective in reducing valgus and varus deformity in poultry (U.S. Pat. No. 5,760,083), and attenuating allergic responses (U.S. Pat. No. 5,585,400). CLA has also been reported to increase feed conversion efficiency in animals (U.S. Pat. No. 5,428,072). CLA-containing bait can reduce the fertility of scavenger bird species such as crows and magpies (U.S. Pat. No. 5,504,114).
Industrial applications for conjugated fatty acids also exist where they may be used as lubricant constituents (U.S. Pat. No. 4,376,711). Conjugation can be used as a means to chemically modify fatty acids, such as linoleic acid, so that they are readily reactive to Diels-Alder reagents (U.S. Pat. No. 5,053,534). In one method linoleic acid was separated from oleic acid by first conjugation then reaction with maleic anhydride followed by distillation (U.S. Pat. No. 5,194,640).
Conjugated fatty acids occur naturally in ruminant depot fats. The predominant form of conjugated fatty acid in ruminant fat is the 9Z,11E-octadecadienoic acid which is synthesized from linoleic acid in the rumen by micro-organisms like
Butryvibrio fibrisolvens
. The level of CLA found in ruminant fat is in part a function of dietary 9Z,12Z-octadecadienoic acid and the level of CLA in ruminant milk and depot fat may be increased marginally by feeding linoleic acid (U.S. Pat. No. 5,770,247).
Conjugated fatty acids may also be prepared by any of several analytical and preparative methods. Pariza and Ha pasteurized a mixture of butter oil and whey protein at 85° C. for 5 minutes and noted elevated levels of CLA in the oil (U.S. Pat. No. 5,070,104). CLA produced by this mechanism is predominantly a mixture of 9Z,11E-octadecadienoic acid and 10E,12Z-octadecadienoic acid.
Conjugated fatty acids have also been produced by the reaction of soaps with strong alkali bases in molten soaps, alcohol, and ethylene glycol monomethyl ether (U.S. Pat. Nos. 2,389,260; 2,242,230 & 2,343,644). These reactions are inefficient, as they require the multiple steps of formation of the fatty acid followed by production of soap from the fatty acids, and subsequently increasing the temperature to isomerize the linoleic soap. The conjugated fatty acid product is generated by acidification with a strong acid (sulfuric or hydrochloric acid) and repeatedly washing the product with brine or CaCl
2
. Iwata et al. (U.S. Pat. No. 5,986,116) overcame the need for an intermediate step of preparation of fatty acids by reacting oils directly with alkali catalyst in a solvent of propylene glycol under low water or anhydrous conditions. Reaney et al., in U.S. patent application Ser. No. 09/451/710, entitled “Commercial production of CLA”, and Yurawecz, Mossaba, Kramer, Pariza and Nelson Eds. Advances in conjugated linoleic acid research, Vol. 1 pp.39-54 identified that conjugated fatty acid products prepared in the presence of glycol and other alcohols may transesterify with fatty esters and produce esters of the glycol. Such esters have been identified by Reaney et al. (unpublished data) in commercial products and in CLA prepared in propylene glycol by the method of U.S. Pat. No. 5,986,116. Esters of CLA containing fatty acids and propylene glycol have biological activity and therefore their presence in the CLA product is undesirable.
Conjugated fatty acids have been synthesized from fatty acids using SO
2
in the presence of a sub-stoichiometric amount of soap forming base (U.S. Pat. No. 4,381,264). The reaction of linoleic acid with this catalyst produced predominantly the all trans configuration of CLA.
Efficient synthesis of 9Z,11E-octadecadienoic from ricinoleic acid has been achieved (Russian Patent 2,021,252). This synthesis, although efficient, uses expensive elimination reagents such as 1,8-diazobicyclo-(5,4,0)-undecene. For most applications the cost of the elimination reagent increases the production cost beyond the level at which commercial production of CLA is economically viable.
Of these methods, alkali isomerization of soaps is the least expensive process for bulk preparation of conjugated fatty acids. However, the use of either monohydric or polyhydric alcohols in alkali isomerization of conjugated fatty acids can be problematic. Lower alcohols are readily removed from the conjugated product but they require the production facility be built to support the use of flammable solvents. Higher molecular weight alcohols and polyhydric alcohols are considerably more difficult to remove from the product and residual levels of these alcohols (e.g. ethylene glycol) may not be acceptable in the conjugated product.
Water may be used in place of alcohols in the conjugation of fatty acids by alkali isomerization of soaps (U.S. Pat. Nos. 2,350,583 and 4,164,505). When water is used for this reaction it is necessary to perform the reaction in a pressure vessel whether in a batch (U.S. Pat. No. 2,350,583) or continuous mode of operation (U.S. Pat. No. 4,164,505). The process for synthesis of conjugated fatty acids from soaps dissolved in water still requires a complex series of reaction steps. Bradley and Richardson (Industrial and Engineering Chemistry February 1942 vol. 34 no.2 237-242) were able to produce conjugated fatty acids directly from soybean triglycerides by mixing sodium hydroxide, water and oil in a pressure vessel. Their method eliminated the need to synthesize fatty acids and then form soaps prior to the isomerization reaction. However, they reported that they were able to produce oil with up to 40 percent CLA. Quantitative conversion of the linoleic acid in soybean oil to CLA would have produced a fatty acid mixture with approximately 54 percent CLA.
Commercial conjugated linoleic acid often contains a mixture of positional isomers that may include 8E,10Z-octadecadienoic acid, 9Z,11E-octadecadienoic acid, 10E,12Z-octadecadienoic acid, and 11Z,13E-octadecadienoic acid (Christie, W. W., G. Dobson, and F. D. Gunstone, (1997) Isomers in commercial samples of conjugated linoleic acid. J. Am. Oil Chem. Soc. 74,11,1231).
The present invention describes a method of production of conjugated fatty acids using a polyether alcohol, such as polyethylene glycol alone or with a co-solvent as a reaction medium and vegetable oil, a fatty acid or ester thereof containing one or more interrupted diene moieties. In a preferred embodiment the reaction products of linoleic acid in polyether glycol containing solvent are primarily 9Z,11E-octadecadienoic acid and 10E,12Z-octadecadienoic acid i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for commercial preparation of preferred isomeric... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for commercial preparation of preferred isomeric..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for commercial preparation of preferred isomeric... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3288707

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.