Coating processes – With post-treatment of coating or coating material – Heating or drying
Reexamination Certificate
2001-11-15
2003-10-21
Koehler, Robert R. (Department: 1775)
Coating processes
With post-treatment of coating or coating material
Heating or drying
C148S533000, C148S534000, C148S540000, C148S541000, C148S546000, C427S432000, C427S433000, C427S436000, C428S939000
Reexamination Certificate
active
06635313
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to a method of coating a dual phase high strength steel, and a product produced thereby, and particularly, to the use of a high strength dual phase steel containing carbon, manganese and molybdenum in a galvanizing/galvannealing process using processing conditions normally employed for low and ultra low carbon steels that do not contain easily oxidized and intentionally added alloying elements such as manganese and silicon.
BACKGROUND ART
In the prior art, it is very common to coat or galvanize steels with zinc for corrosion protection. In these galvanizing processes, the general process involves heating the steel under controlled conditions, dipping the steel into a molten bath of a coating metal such as zinc or a zinc alloy, and cooling the coated material for subsequent use.
In certain instances, the coated material can be further heated, typically known in the art as galvannealing, whereby the applied coating forms an alloy with the base steel material during the subsequent heating. Galvannealed material is advantageous in that the surface has good paint-adherence properties.
One of the problems in zinc-coating processes is the difficulty in coating high strength steels. Manufacture of high strength steels requires additions of strengthening elements. For strengthening through the formation of a dual phase microstructure (ferrite plus, primarily martensite), it is essential to make additions of such elements as Mn, Si, Mo, and Cr. Some of these elements can have a detrimental effect on the coating quality due to zinc dewetting when coated by hot dip galvanizing. Elements such as Mn, Si, and Cr that are easily oxidizable are troublesome when present above their normal low levels in steels. For example, when manganese and silicon alloying additions are made, the annealing furnace atmosphere in a continuous hot-dip coating line is reducing to iron but oxidizing to silicon and manganese. The formation of oxides of manganese and silicon, either as separate oxides or as a complex oxide, can impair zinc adhesion to the steel and produce bare (uncoated) spots on the steel surface. Other alloying additions that form more stable oxides than iron are also expected to result in similar coating difficulties during hot dip galvanizing.
The problem of coating high strength steels, particularly those containing large amounts of manganese is recognized in EP 1 041 167 to Kawasaki Steel. This publication admits that it is very difficult to manufacture high strength steel on a hot dip galvanizing line due to the presence of alloying elements added for strength, and specifically notes the problems with the presence of manganese oxides and the difficulties in zinc coating when these oxides are present.
The Kawasaki Steel EP publication attempts to eliminate the dewetting problems encountered when coating high strength steels with zinc through the use of a specific alloy and a complicated heating cycle. More particularly, Kawasaki Steel employs a particular composition in a steel sheet form and heats the composition to a prescribed level to cause dispersion of a band structure comprising a secondary phase, mainly cementite, pearlite, and bainite, and only partially martensite and residual austenite, to a prescribed extent.
Kawasaki recognizes the problems when the manganese content is high for a steel that is to be galvanized, and suggests that the steel should be first annealed on a continuous annealing line and then heated as part of the galvanizing process. Kawasaki does suggest that a single high temperature heating prior to galvanizing can be done (but provides no specifics as to such a process), and acknowledges that this type of high temperature heating deteriorates the steel surface. To avoid this problem, Kawasaki suggests a two step heating process including first heating the steel in a continuous annealing line at a temperature of at least 750° C., cooling the steel, pickling the steel surface, and then heating the steel between 650° and 950° C. just prior to dipping the steel in the galvanizing hot dip bath. As part of the second heating step, Kawasaki suggests that the dew point temperature be controlled within −50° C. and 0° C. The steel exemplified in Kawasaki utilized 2.0% by weight manganese, 0.15% by weight molybdenum, and about 0.09% carbon, and the example used a heating-pickling-heating-galvanizing process to coat the material, requiring the use of a continuous anneal line and a galvanizing line.
While Kawasaki suggests ways to avoid the problems of coating high strength steels, the proposed solutions are still disadvantageous in that a special two step processing is required. Thus, when attempting to coat these types of steels, modifications must be made to the conventional galvanizing line, or extra processing steps are required.
Another solution proposed in the prior art for the coating problems of high strength steels is electrolytically plating the steel substrate with nickel or an iron-boron alloy as described in U.S. Pat. No. 4,913,785, assigned to Nisshin Steel. Japanese Publication No. JP A 60 262950 also teaches electroplating nickel on steel substrates containing silicon and aluminum as a precursor step for galvanizing.
It has also been suggested that the hydrogen content in the annealing furnace be increased to prevent zinc dewetting on manganese-containing high strength interstitial free steel, see “Hot Dip Galvannealing of Interstitial Free Steel Strengthened by Manganese,” Zhang et al., Galvatech '95 Conf. Proc., pp. 115-120. It has also been reported that the dew point of the annealing atmosphere should be increased to improve zinc dewetting on a high strength Mn-containing Ti—Nb interstitial free steel substrate, see “Influence of the Dew Point of the N2—H2 Atmosphere during Recrystallization Annealing on the Steel Surface of TiNb IF High Strength Steels', Hertveldt et al., 41
st
MWSP Conf. Proc., ISS, Vol. XXXVIII, 1999, pp. 227-234. In this article, it is suggested that increasing the dew point allows the manganese oxides to form internally in the steel rather than on the surface.
In view of the added burdens imposed by the various prior art solutions to the problem of coating high strength steels and particularly zinc dewetting, a need still exists for simpler yet effective methods to coat these types of steels. The present invention responds to this need via the discovery that conventional galvanizing/galvannealing processing conditions can be used when galvanizing/galvannealing a manganese-molybdenum-carbon-containing dual phase high strength steel composition.
SUMMARY OF THE INVENTION
Accordingly, it is a first object of the present invention to provide a method of coating high strength dual phase steels using galvanizing processing conditions that would typically be employed on steels that do not contain alloying element that are easily oxidized.
Another object of the present invention is a method of coating a high strength dual phase steel, wherein the steel is a dual phase high strength type that contains controlled amounts of carbon, manganese, and molybdenum.
A still further object of the invention is a galvanized or galvannealed dual phase high strength steel made by the inventive method, preferably one having a tensile strength ranging between about 500 and 700 MPa.
Yet another object of the present invention is a method of hot-dip coating a high strength dual phase steel using a multi-zone furnace wherein the dew point temperature in the furnace varies within a range in the zones and between zones without adversely affecting the quality of the zinc coating on the steel material.
Other objects and advantages of the present invention will become apparent as a description thereof proceeds.
In satisfaction of the foregoing objects and advantages, the present invention is an improvement in galvanizing/galvannealing high strength dual phase steel. The invention uses a dual phase high strength steel employing manganese, carbon, and molybdenum in a hot-dip coating process utili
Pradhan Rajendra
Shastry C. Ramadeva
ISG Technologies Inc.
Koehler Robert R.
Masteller, Jr. Harold I.
LandOfFree
Method for coating a steel alloy does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for coating a steel alloy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for coating a steel alloy will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3168073