Method for cleaning salt impregnated hog fuel and other...

Furnaces – Process – Treating fuel constituent or combustion product

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C110S348000, C110S218000, C110S219000

Reexamination Certificate

active

06792881

ABSTRACT:

BACKGROUND OF THE INVENTION
Interest in the utilization of renewable biomass resources as fuels is growing against a background of worldwide depletion of fossil fuels, and emissions of greenhouse gases from fossil fuel combustion.
Whilst some processes can handle large volumes of biomass directly as fuels, the convenience of liquid fuels has led to the emergence of technology to convert biomass into liquids, effectively bio-oil.
Biomass as harvested typically contains impurities or compounds that can affect its processing, or cause serious equipment fouling and/or additional emissions The cleaning of biomass to remove undesirable impurities and compounds that cause processing issues and emissions is difficult to achieve economically, and is a hindrance to the development and expansion of biomass utilization processes. The impurities and undesirable compounds may be solids that cause excessive equipment wear and maintenance, or may be dissolved or occluded compounds that have similar effects and which also, in processing of combustion, generate serious emissions and pollution, or may be compounds contained within the biomass. Such compounds include fertilizer and other residues from minerals absorbed by the biomass during its growth. These compounds typically end up in ash when the biomass is combusted, but may cause fouling and high maintenance costs in conversion processes.
The conversion of biomass into either energy by combustion or other products with various processes is imperfect, and results in a certain amount of wastage, normally in the form of waste heat. The waste heat is typically lost in the form of warmed-up coolant, often warm water. One such example of biomass use as a fuel is the burning of “Hog Fuel” by pulp and paper mills.
Pulp mills utilize the outer layers of logs, mainly bark but also small branches and leaves, also sawdust, (commonly called “Hog Fuel”) as fuel for their boilers. When the hog fuel has been immersed in sea water, for example when the raw logs are delivered floating in sea-water, then the outer layers absorb salt water. The hog fuel produced from such sources contains substantial quantities of salt, typically 0.9% up to 2% by weight, and also sand and other debris.
The salt enters the boilers with the hog fuel, and is emitted as salt crystals or converted by chemical reaction into a variety of inorganic and organic compounds including salt cake, dioxins and furans. These materials cause corrosion of the boiler, and also constitute a major source of pollution. “Dioxin” is a general term that describes a group of hundreds of organo-chlorine chemicals, some of the most toxic compounds known, that are highly persistent in the environment. “Furans” are also long-lived organo-chlorine compounds with carcinogenic and other undesirable environmental impacts. Dioxin has been described by the US Environmental Protection Agency as a serious public health threat. The International Agency for Research on Cancer (IARC, part of the World Health Organization, considers one dioxin as a Class I carcinogen. The combustion of salty hog fuel causes major emissions of dioxins.
Pulp and paper mills also produce and utilize large quantities of warm and hot water in their pulping operations. There is a net excess of such heated water, and this must go to disposal, causing thermal pollution, a waste of energy and through this additional greenhouse gases emissions.
Efforts to reduce dioxin pollution from mills to date have been directed towards capture of the dioxin, its reduction through chemical injection into the boiler where it is formed, and the use of special boiler designs or boiler operations. These methods do not avoid the formation of, or eliminate the dioxin or salt emissions, and in some cases add another pollutant from the injected materials. There is also evidence that precipitators commonly used to capture particulates in boiler flue gases provide just the right conditions to form more dioxins. The ash produced on boilers burning hog fuel containing salt also contains concentrations of dioxins. The ash containing dioxins is regarded as hazardous waste and normally goes to special lined landfills.
SUMMARY OF THE INVENTION
The method of the present invention, in contrast, inhibits or reduces, in one aspect, the formation of dioxins by removing the chlorine-containing contaminant (for example salt or NaCl) from hog fuel including mulched bark before it is burned. The method also prevents salt emissions from boiler stacks by removing the salt from the hog fuel before it enters the boilers. The salt, containing chlorine, may be returned to the sea. The invention is however broader in application than to only the solvating of salt from hog fuel in the presence of warm or hot water. Contaminants may be other than salt so long as the corresponding solvent or reactant, whether chemical or biological, required to neutralize or remove the particular contaminant is employed in the method. Consequently, it is intended herein that reference to contaminants is to be interpreted to include more than merely salt, and that reference to solvent is to include more than merely water and is to include solvent or other reactants corresponding to the particular contaminant, and therefore that reference herein to burner is to include both combustors and reactors.
This invention relates in one application of the method to the removal of salt from hog fuel by contacting the hog fuel with excess warm or hot water streams generated in a pulp mill, which streams commonly pass from the mill as effluent, or otherwise water from an outside source for use in salt extraction.
The method may employ counter current diffusion extraction equipment of any suitable configuration that will provide both mass and heat transfer. The extraction equipment may be used in a horizontal, vertical or inclined plane. In particular, the method according to the present invention may employ means of bringing hog fuel and water, into intimate contact, by using various types of extraction equipment, counter-current extraction, pipelines, fluid-beds, cyclones, cross-flow devices pulsed extractors, filters or extractors purpose-built to provide the means of mass and heat transfer, or any other contacting device or combinations of the above.
The method of the present invention is for the avoidance or reduction of dioxin creation by, for example, counter-flow washing of salt from hog fuel, and for the simultaneous recovery of waste energy. The method may be employed using:
(i) a mass flow conveyor, such as a screw conveyor, having an infeed and an opposite outfeed, providing a pre-selected number of mass and heat transfer stages so as to provide for efficient and economic operation and
(ii) a water source,
The method of comprising the steps of:
(a) feeding cold salt-laden hog fuel into said infeed of said conveyor,
(b) translating said hog fuel along said conveyor in a first direction towards said hog fuel outfeed,
(c) simultaneously feeding solvent into intimate intermingling or turbulent contact with said hog fuel in or on said conveyor, for example so as to cause a water flow in a second direction counter to said first direction in a counter-flow of said water through said translating hog fuel,
(d) extracting, salt-laden solvent following said contact and, extracting de-salted hog fuel via said hog fuel outfeed.
In one preferred embodiment the solvent, at least in part, is warm or hot effluent water. In alternative embodiments, the conveyor is a screw conveyor or may be other mass-flow conveyor means for conveying said hog fuel in said first direction from said infeed to said outfeed so long as said mass-flow conveyor means provides for, or is adapted to provide, interaction of said hog fuel (or other mineral laden mass flow) for example in counter or cross flow with said water flowing in said second direction for flushing and dissolving said minerals from said mass flow on said conveyor means and for heat exchange of energy from the water to the mass flow.
In summary, the method according to the present inv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for cleaning salt impregnated hog fuel and other... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for cleaning salt impregnated hog fuel and other..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for cleaning salt impregnated hog fuel and other... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3217282

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.