Method for classifying and treating physiologic brain...

Surgery – Diagnostic testing – Detecting brain electric signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S300000

Reexamination Certificate

active

06622036

ABSTRACT:

BACKGROUND OF THE INVENTION
Many researchers continue to attempt to employ neurophysiologic techniques, such as electroencephalography (EEG), magnetic resonance imaging (MRI), functional magnetic resonance imaging (FMRI), positron emission tomography (PET), single photon emission computerized tomography (SPECT), as well as others, to guide therapeutic outcome in psychiatry. For example, the neurophysiologic technique of EEG measures the electrical activity of the brain as a function of time varying spontaneous potentials (SP) through a number of electrodes placed at standard locations on the scalp. The neurophysiologic information obtained through EEG analysis is recorded as sets of traces of the amplitude of SP referenced over time for scalp electrodes that are referenced electrically. This analog EEG information can then be visually analyzed and interpreted for signal abnormalities.
In the 1970's, quantitative analysis of the EEG signal provided rapid easy access to measurements that extended the EEG method beyond qualitative visual detection of signal abnormality. Quantitative EEG (QEEG) studies involve the multi-channel acquisition, processing, and analysis of brain activity often but not exclusively by computers. An example of an EEG/QEEG instrument is the Easy Writer II system, available from Caldwell Laboratories, Inc. (Kennewick, Wash.).
In one version of EEG/QEEG recordings, nineteen or more electrodes are commonly placed at standard locations on the scalp using the International 10/20 Placement System. A multi-channel recording of the brain's activity in an awake, eyes-closed, or “background” state is then recorded and analyzed often by use of Fast Fourier Transform (FFT) signal processing. Signal processing of the raw EEG permits measurement and quantification of multiple characteristics of brain electrical activity. In this process, artifacts due to muscle or eye movement or environmental noise are rejected, leaving only valid information suitable for further analysis.
Although technical and methodological guidelines for versions of EEG/QEEG extraction have been presented, studies that do not observe these essential guidelines are common. In addition to guideline non-conformance, the practice of ignoring the composite nature of psychiatric imbalances is commonplace. As a result, typical EEG/QEEG findings have not always been repeatable, and use of these versions of QEEG in psychiatric assessment and treatment is minimal.
Current behavioral definitions of psychiatric disorders do not correlate well with response patterns to medical treatment. Since psychiatric imbalances are behaviorally defined, they do not demonstrate a consistent relation with individual neurophysiological information, such as from EEG/QEEG or other neurophysiological techniques such as MRI, FMRI, PET, SPECT or other related techniques. However, if neurophysiological information were used as the independent variable and medication response is analyzed as the dependent variable, a connection between neurophysiology and the clinical outcome of treatment may be observed.
There is a need to develop clinical methods for using neurophysiological information as an independent variable and medication response as the dependent variable in order to probe the connection between neurophysiology and treatment outcome. Given such methods, the relationship between observed neurophysiologic abnormality, neurophysiologic intervention, and neurophysiologic treatment outcome in a given patient can be gauged.
There also is a need to develop a method for comparing quantified neurophysiologic information so that pattern differences between individual patients and reference groups can be catalogued and further, for classifying the neurophysiologic information of symptomatic patients according to anticipated treatment response and outcome measures.
There is a further need to develop a method for treating physiologic brain imbalances using neurophysiologic information. Supplemental to these treatment-associated needs, there is a need to develop a method for guiding clinical testing for new chemical, electrical, magnetic other interventions to treat physiologic brain imbalances, and for identifying new uses for known interventions.
Finally, there is a need to develop a method for the remote assessment and treatment of physiologic brain imbalances using neurophysiologic information.
SUMMARY OF THE INVENTION
These and other needs are met by the present invention, which is directed to a method for classifying and treating physiologic brain imbalances. The method involves using neurophysiologic techniques to obtain a set of analytic brain signals from a patient. A set of digital parameters is determined from this set of analytic brain signals. The analytic brain signals employed in the present invention are collected from neurophysiologic instruments that collect and store neurophysiologic data such as EEG/QEEG signals, MRI signals, PET signals, SPECT signals, and any combination or variation thereof. The digital parameters generated from these analytic signals can be quantitatively mapped to various therapy responsivity profiles.
More particularly, the method of the invention employs neurophysiologic information for assessing, classifying, analyzing and generating treatment recommendations for physiological brain imbalances. The invention is based upon the discovery that neurophysiologic information can be used as an independent variable to identify physiologic brain imbalances.
According to the invention, the analytic brain signals and preferred quantified parameters for a patient that are obtained using neurophysiologic techniques are compared to aggregate neurophysiologic information contained in databases relating to “asymptomatic” and “symptomatic” reference populations. This process of comparison is used to make treatment recommendations. A catalogue of physiological deviations in the neurophysiologic information of patients with psychiatric disturbance is constructed according to the invention by comparing individual patient neurophysiologic information, preferably quantified neurophysiologic information, with the neurophysiologic information of reference populations of symptomatic and asymptomatic individuals. A set of multivariable neurophysiologic outcome measurements is developed to gauge deviation magnitudes and to establish pattern differences between individual patients and reference groups. Treatment response patterns are then correlated according to the invention as a dependent variable with this information, as discussed in detail below. It has been discovered that this correlation provides a strong connection to successful outcomes for clinical treatment of afflicted patients.
In one aspect, the present invention is directed to a method for classifying and cataloguing physiologic brain imbalances using neurophysiologic information, and more preferably, quantified neurophysiologic information, relative to a reference population of asymptomatic persons. Physiological deviation from normal functioning, or pathophysiology, defines a biologic model that is the basis of this method. According to the method, physiological deviation is an independent variable that organizes and guides the selection of physiologic therapy regimes to treat disease.
In another aspect, the present invention is directed to a method for assessing and treating physiologic brain imbalances using quantified neurophysiologic information such as EEG/QEEG or SPECT. This aspect of the present invention uses physiological criteria to guide selection of treatment modalities to yield improved therapeutic outcomes. In the method, quantified multivariable neurophysiologic outcome measurements that have been classified as abnormal based on comparison to the quantified multivariable neurophysiologic outcome measurements of a normal or asymptomatic population is submitted for further neurophysiologic analysis using an Outcomes Database for comparison. This Outcomes Database contains neurophysiologic information from symptomatic individuals w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for classifying and treating physiologic brain... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for classifying and treating physiologic brain..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for classifying and treating physiologic brain... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3044309

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.