Data processing: measuring – calibrating – or testing – Calibration or correction system – Position measurement
Reexamination Certificate
2000-12-29
2002-04-16
Hoff, Marc S. (Department: 2857)
Data processing: measuring, calibrating, or testing
Calibration or correction system
Position measurement
C702S149000
Reexamination Certificate
active
06374190
ABSTRACT:
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention relates to a method for calibrating an angle sensor which is affected by the operating temperature and to a navigation system having an angle sensor.
Inexpensive gyroscopes used in navigation systems are particularly prone to provide temperature-dependent measurement values. The output signal for a change in an angular position of 0° per time unit (zero point) can be subject to severe fluctuations during a journey on account of the temperature-dependent measurement. The temperature responses of gyroscopes are individual for each respective gyroscope and cannot be defined in a general manner for a particular type of gyroscope.
U.S. Pat. No. 5,527,003 discloses a navigation system for aircraft in which the temperature response of a gyroscope is taken into account during a direction measurement. While the aircraft is in an initial orientation on the ground, a set of direction errors is ascertained for the associated temperatures. The direction of the aircraft is then changed and direction errors are ascertained again and are deducted from the initial values in order to obtain temperature-related values. The values are interpolated on the basis of originally set temperature values.
British Patent Application No. GB 301437 A relates to a compensation of temperature errors in a gyroscope. A scaling factor is determined as a function of the temperature. The scaling for a particular temperature is calculated on the basis of a reference temperature.
From U.S. Pat. No. 5,394,333 it is known to determine separate correction factors for a position which has been determined using a GPS (Global Positioning System) sensor and using composite navigation sensors. The measure used for the correction factor is the distance between the measured position and the corresponding probable position on a digital road map. The system uses either the position ascertained using the GPS sensor or the position ascertained using composite navigation, depending on which of the two values has the lower correction factor. However, the GPS signal may not be available at all locations or may not be available in uncorrupted form. If the direction of motion is measured using an angle sensor which has temperature-related errors, then the measurement accuracy is influenced, sometimes considerably, by the changing operating temperature of the angle sensor.
U.S. Pat. No. 5,297,028 discloses measuring and storing the zero point of an angle sensor for a plurality of operating temperatures. The measured values are used to correct the temperature drift of the angle sensor. If a memory location is missing a measured value, two adjacent, stored values are interpolated.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method for calibrating an angle sensor influenced by the operating temperature and a navigation system having such an angle sensor which overcome the above-mentioned disadvantages of the heretofore-known methods and systems of this general type and which take into account a temperature response of the angle sensor on an individual basis.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for calibrating an angle sensor influenced by an operating temperature, the method includes the steps of:
ascertaining an output signal for a zero point of an angle sensor and measuring an operating temperature associated with the angle sensor;
forming a new reference signal from the output signal and from a reference signal for the zero point provided for the operating temperature;
storing the new reference signal;
recording a respective number indicating how often storage operations for reference signals have been performed for each of a plurality of temperatures;
determining an influence of the reference signal for the zero point stored for a given temperature on a formation of the new reference signal based on the respective number indicating how often the storage operations have been performed; and
setting the zero point of the angle sensor by using the new reference signal.
The zero point of a gyroscope (gyro zero point) or rotation rate sensor can be established when there is no motion, for example when a vehicle is at a standstill, or by using measured values from other sensors, for example a GPS receiver and/or differential wheel sensors. In addition to the gyroscope's output signal for the zero point, the operating temperature of the angle sensor is measured indirectly or directly. The output signal for the zero point is stored and assigned to a particular temperature.
Over a relatively long operating period with changes in the operating temperature of the angle sensor, the respective output signals for the zero point are stored for a plurality of temperatures. The stored values are then available for adjusting or calibrating the angle sensor for a particular operating temperature.
Reference signals for the zero point are preferably stored for predefined temperatures. When an output signal for a measured operating temperature is stored, the value for two predefined temperatures contained in the memory is then extrapolated. Conversely, when loading a value for the zero point, a value is interpolated using two values stored for predefined temperatures which are closest to the operating temperature. In this way, a very high level of accuracy is obtained despite a limited number of stored values.
According to the invention, it is recorded how often an output signal for a zero point has been stored for a particular temperature. In this case, when a new reference signal is calculated for this temperature, the stored value is used to a greater extent than an externally determined value the more often the value has already been stored for the particular temperature. The accuracy of the value is inferred from the number or frequency of the storage operations for a particular temperature. A newer, possibly more inaccurate measurement of the zero point is therefore used only to a limited extent in the formation of a new reference signal.
In order to be able to take into account the aging of the angle sensor, the influence of a stored value on the formation of a new reference value for the zero point is limited. Preferably, even with an infinite number of storage operations, the influence of an output signal stored for a particular temperature cannot exceed 70 to 90% when forming a new reference signal for the zero point.
According to another mode of the invention, signals are stored for the zero point of the angle sensor for a plurality of given temperatures, and, for the operating temperature, the reference signal is formed from a first signal stored for a first temperature lower than the operating temperature and from a second signal stored for a second temperature higher than the operating temperature.
According to yet another mode of the invention, the new reference signal for the operating temperature is converted back into a first signal for a first temperature lower than the operating temperature and a second signal for a second temperature higher than the operating temperature; and the first signal and the second signal are stored.
According to a further mode of the invention, a scaling factor for the angle sensor is formed based on the reference signal.
According to another mode of the invention, a gyroscope is used as the angle sensor.
According to yet another mode of the invention, signals for the zero point are stored for given temperatures during a manufacturing process.
With the objects of the invention in view there is also provided, a navigation system, including:
a processor;
an angle sensor connected to the processor for providing first data to the processor;
a distance sensor connected to the processor for providing second data to the processor;
a temperature sensor connected to the processor for measuring an operating temperature of the angle sensor;
a memory connected to the processor and storing a table for providing reference signals as calibration v
Greenberg Laurence A.
Hoff Marc S.
Lerner Herbert L.
Raymond Edward
Siemens Aktiengesellschaft
LandOfFree
Method for calibrating an angle sensor and navigation system... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for calibrating an angle sensor and navigation system..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for calibrating an angle sensor and navigation system... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2930082