Method for calibrating a smart-antenna array radio...

Communications: directive radio wave systems and devices (e.g. – Testing or calibrating of radar system – By monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S189000, C342S378000

Reexamination Certificate

active

06496140

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method for calibrating a smart-antenna array of a time division duplex (TDD) system, which smart antenna comprises an array of at least two antenna elements, each with a transmit (TX) and a receive (RX) radio frequency branch. The invention equally relates to a radio transceiver unit with a smart antenna array for a wireless access system using time division duplex, and to a calibrating system for calibrating a smart antenna array of a wireless access system using time division duplex.
2. Description of the Related Art
Smart antennas are known to be employed as transmit and receive antennas in wireless access systems, in particular in base stations of such systems. Smart antennas, which generally use an array of antenna elements, enable the output of fully steerable beams patterns. They can be employed for example for a user specific digital beamforming, in which a beamformer of the smart antenna array is able to weight phase angle and/or amplitude of the signals transmitted by different antenna elements of the array in a way that the direction of the beam is adapted to move along with a mobile terminal through the whole sector of coverage of the antenna array.
Smart, or adaptive, antennas offer several benefits for wireless communications systems. The directivity of smart antennas can be used for example to reduce the delay spread of a radio channel. Moreover, the diversity of the antenna guards against fading. When employed in a base station, the output power of mobile terminals served by the base station can be decreased due to the spatial gain, which results in a longer battery lifetime. Array antennas also serve to increase the range of base stations, and the interference power to and from neighboring cells can be lowered considerably, thus improving the signal-to-interference ratio and the overall network capacity. Finally, mobile terminals served by the same base station can be identified according to their spatial signatures. This enables to further increase capacity of the base station by serving several terminals in the same time slot in space division multiple access (SDMA) operation.
Since the smart-antenna algorithms are frequently implemented at the baseband, most smart antenna systems provide for each antenna element separate radio frequency (RF) components for transmission and for reception of signals in dedicated transmit and receive branches. The RF components of the different receive and transmit branches of the different antenna elements usually have different properties. If the differences between the antenna elements and between the different branches of each antenna element are not compensated by an array calibration, the gain of the smart antenna is degraded. Furthermore, these properties evolve differently in time, which makes a real-time calibration necessary.
Smart antennas can be employed e.g. in a time division duplex system, in which adaptive antennas are particularly effective, since the optimum pattern formed in reception mode can be used for determining an optimum transmission pattern. The properties of such a TDD system can be made use of for calibration. In a TDD system, the employed frequency channels are divided into time slots, which are alternatingly reserved for transmission in uplink and downlink direction. Therefore, there is always only one direction of transmission possible at a time. The TDD is realized by connecting alternatingly a transmit and a receive branch in each antenna element.
Kentaro Nishimori, Keizo Cho, Yasushi Takatori, and Toshikazu Hori propose in “A new calibration method of adaptive array for TDD systems,” in Proc. Antennas and Propagation Society, IEEE International Symbosium, 1999, vol. 2, pp. 1444-1447, a method for calibrating a smart antenna array with a plurality of antenna element for TDD systems.
In this method, first a signal transmitted via the transmit branch of a first antenna element is divided by a directional coupler in the transmit branch. The signal is received via a switchable connection by the receive branches of each of the other antenna elements in turn. Then, signals transmitted via the transmit branches of each of the other antenna elements are divided by directional couplers in the respective transmit branch. Signals divided from one of these transmit branches after the other are received by the receive branch of the first antenna element by switching between corresponding connections. For the respective transmitted and received signals, the phase differences and gains are determined, which are then used for calculating for each antenna element a calibration value that can be used for correcting at the same time phase and gain in relation to a selected reference antenna element. Phase calibration and amplitude calibration are therefore combined. Due to the fact that the method is based on a TDD system, no signals from outside of the unit comprising the smart antenna array are received during the transmissions by the antenna elements. Therefor, the evaluated received signals result exclusively from the respectively evaluated transmitted signal of the antenna array.
It is an advantage of this method that in contrast to other known calibration methods, the calibration can be carried out during normal transmissions, using the signals transmitted during these normal transmissions as calibration signals. Therefore, no additional signal generator is needed and no transmission capacity is lost.
A disadvantage of the described calibration system, however, results from the switching used for selecting different antenna elements of the antenna array. The performance of active or semi active components like switches is varying in time, the consequence of which are unstable calibration results. Furthermore, an implementation using switches can be rather expensive.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a method, a radio transceiver unit comprising a smart antenna array and a calibration system that enable a time stable calibration of a smart antenna array.
This object is reached on the one hand with a method for calibrating a smart-antenna array of a wireless access system using time division duplex, which smart antenna array comprises at least two antenna elements, each with a transmit and a receive radio frequency branch. The calibrating is based on the evaluation of signals transmitted via the transmit branch of one of the antenna elements and received via the receive branch of another one of the antenna elements respectively. The transmit and receive branches used for the respective transmission are physically interconnected. At least those transmit branches of antenna elements connected to a receive branch of an antenna element that is connected at the same time to a transmit branch of at least one other antenna element are employed in a predetermined order for transmitting broadcast messages in predetermined broadcast periods during which the respective other antenna elements are prevented from transmitting signals.
On the other hand, the object is reached with a radio transceiver unit for a wireless access system using time division duplex comprising a smart antenna array with at least two antenna elements, each including a transmit and a receive branch. In the transmit and the receive branch of each antenna element a directional coupler is provided for coupling signals out of the transmit branches and for coupling signals into the receive branches. Each coupler in the transmit branch of an antenna element is connected by a physical connection to the coupler in the receive branch of at least one other antenna element. Selection means are provided for selecting in a predetermined order at least each of those transmit branches of antenna elements connected to a receive branch of an antenna element that is connected at the same time to a transmit branch of at least one other antenna element to be employed for transmitting broadcast messages in predetermined broadcast periods during which th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for calibrating a smart-antenna array radio... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for calibrating a smart-antenna array radio..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for calibrating a smart-antenna array radio... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2927012

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.