Method for automatic operation of industrial plants

Data processing: generic control systems or specific application – Generic control system – apparatus or process – Supervisory control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S009000, C700S029000, C700S104000, C700S108000, C700S019000, C702S188000, C709S217000

Reexamination Certificate

active

06529780

ABSTRACT:

The invention relates to an automation system for the erection and operation of industrial plants, in particular for the design, project engineering, implementation, commissioning, maintenance and optimization of individual plant components or complete plants in the basic materials industry, having a computer-based control system which, for a description of the process in control engineering terms, has recourse to process models, for example in the form of mathematical/physical models, neural network models or knowledge-based systems.
The increasing requirements on the efficiency of industrial plants, such as rolling mills, require working and production processes which are operated with the highest degree of economy, safety and reliability. It s therefore known to automate production processes consistently to the largest possible extent by means of a computer-aided information flow right from the design stage. Mathematical/physical process models, which describe the process and hence enable simulation and control of the industrial plants, come in useful, in particular for the process management and optimization.
Control systems used for this purpose are disclosed by DE 195 08 474 A1 or DE 195 08 476 A1. The computer-based control systems automatically detect the state of an industrial plant or, respectively, of a production process running in the plant, and generate instructions that are suitable for the situation and ensure intelligent process management. In addition, continuous process optimization takes place, in that the process model, which is based on desired value predefinitions, is improved offline or online with the aid of adaptive methods, for example neural networks.
Furthermore, the German Paten Application 196 249 26.0, which is not a prior publication, discloses a method for commissioning industrial plants having a plant control system that carries out non-control functions and control functions and whose control functions operate using process models in the form of mathematical models, neural network models or expert systems. The known method is distinguished by the fact that the commissioning is carried out subdivided into commissioning of the non-control functions, with extensive initialization of the control functions by personnel located on site, and extensive commissioning of the control functions by means of remotely transmitted data via data lines from at least one site remote from the plant, preferably from an engineering centre.
Furthermore, U.S. Pat. No. 4,783,998 discloses a method of controlling a generator in which the measured values ascertained on the generator are remotely transmitted to a computer for the purpose of analysis and evaluation. A disadvantage here is that the measured values ascertained relate only to individual components, such as the generator shaft, with the result that statements abcut the overall behaviour of the ganerator cannot be made. By contrast, although the control systems disclosed by DE 195 08 474 A1 and DE 195 08 476 A1, and the method disclosed by the German Patent Application 196 249 26.0 make it possible to optimize the overall process of a complex plant on the basis of model interconnections, this is associated with a high financial outlay. The primary reason for this is that specific transmission paths are necessary in order to be able to perform plant-specific optimization decentrally from a remote site.
SUMMARY OF THE INVENTION
The invention is based on the object of developing an automation system for the erection and the operation of industrial plants to the effect that straightforward and cost-effective decentralized process management and optimization remote from the plant may be achieved whilst avoiding the above described disadvantages.
In the case of an automation system of the type cited at the beginning, the object is achieved according to the invention by decentralized process management and optimization by means of one or more interlinked control points, process changes being continuously monitored online or offline or at least checked by modelling, using modern, public communication means, and the process models, parameters and software being adaptable specifically to the plant.
An automation system which is configured in this way enables cost-effective process management and optimization from a site remote from the plant, in that the data to be remotely transmitted are transmitted to the respective industrial plants by means of existing communication means. Since the data not only relates to process-specific parameters but also take into account changes to the process models or even to the software that is located on site, that is to say at the respective industrial plant, the overall result is a reduction in the engineering costs with a simultaneous improvement in the plant function.
According to a further feature of the invention, remote engineering commissioning is provided, in order, on the one hand, to make use of central computing capacity and modern commissioning tools and, on the other hand, to ensure the feedback of know-how from the respective plant into the development. In order to achieve the highest possible time efficiency, remote online and/or offline optimization is advantageously provided.
Furthermore, it is of particular advantage if provision is made for hardware and software components which are designed such that they can be optimized by means of evolutionary, in particular genetic, algorithms. The use of genetic algorithms offers a high probability of achieving a very good optimum. It is therefore expedient to optimize the process models by means of an evolution strategy, preferably genetic programming. An evolutionary strategy also enables, in particular, the checking of neural networks with respect to values running in the direction of a global optimum. Because of the high computing effort, it is recommended that this should take place off line.
According to an advantageous development of the invention, provision is made for a predefined framework for modular software building blocks. In this way, the exchange of software building blocks without programming work may be achieved, with the result that plant-specific adaptation and the long-term maintenance of the overall automation system are ensured. Furthermore, it is expedient if the communication means are telephone, ISDN, satellite or Internet/Intranet connections, in order to achieve the flexibility with respect to existing data lines that is suitable for the requirement.
According to a further advantageous feature of the invention, the control point is designed as a virtual office. The use of modern communication means in this way achieves, for example, decentralized project engineering, development or after-sales service which ensures the incorporation of global resources on the basis of the interlinking.
According to a development of the invention, the control system can be provided with computer equipment for the adaptation of plant-specific parameters, for the storage of process models of plant-specific design, for the storage of prediction algorithms, for the storage of trend sequences, for the storage of adaptation algorithms, for the training and/or the optimization of neural network models and with diagnostic memories, which can be influenced via communication means. This provides the advantage that an industrial plant can be optimized from a site remote from the plant in accordance with technological predefinitions. For this purpose, it is further proposed that the control point be an engineering centre which is remote from the plant and is connected to the control system of an industrial plant by means of remote data transmission.
According to a preferred development of the invention, the engineering centre has an internal network which, for the purpose of communication with the industrial plants, is connected to a remote commissioning and/or operational optimization network via a security data transmission device. A firewall of this type makes secure work possible and protects against espionage.
In order to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for automatic operation of industrial plants does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for automatic operation of industrial plants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for automatic operation of industrial plants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3066780

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.